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Abstract 

Zeta potential is a physico-chemical parameter of particular importance to describe ion 

adsorption and electrostatic interactions between charged particles. Nevertheless, this 

fundamental parameter is ill-constrained, because its experimental interpretation is 

complex, particularly for very small and charged TiO2 nanoparticles. The excess of 

electrical charge at the interface is responsible for surface conductance, which can 

significantly lower the electrophoretic measurements, and hence the apparent zeta 

potential. Consequently, the intrinsic zeta potential can have a larger amplitude, even in 

the case of simple 1:1 electrolytes like NaCl and KCl. Surface conductance of TiO2 

nanoparticles immersed in a NaCl solution is estimated using a surface complexation 

model, and this parameter and particle size are incorporated into Henry's model in order 

to determine a constrained value of the zeta potential from electrophoresis. Interior 

conductivity of the agglomerates is calculated using a differential self-consistent model. 

The amplitude of estimated zeta potential is greater than that derived from the von 

Smoluchowski equation and corresponds to the electric potential at the Outer Helmholtz 

Plane calculated by our surface complexation model. Consequently, the shear plane may 

be located close to the OHP, contradicting the assumption of the presence of a stagnant 

diffuse layer at the TiO2/water interface. 

Keywords: zeta potential, electrophoretic mobility, TiO2, nanoparticle, surface 

conductivity, extended Stern model. 
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1. Introduction 

Titanium dioxide is widely used as TiO2 nanoparticles and has a large variety of 

potential applications in, for example, the biomedical, optical, and electronic fields [1, 

2]. Due to their small size, nanoparticles have a very high surface area to volume ratio 

and are thus of great scientific interest as they are a bridge between bulk materials and 

atomic or molecular structures. The properties of materials change as their size 

decreases to nanoscale and the proportion of surface atoms becomes significant. One of 

these properties, the surface ionization of titanium dioxide nanoparticles in contact with 

an electrolytic solution, has been studied extensively [1, 3-10]. It is well known that the 

complexation reactions at the surface of an oxide mineral are strongly influenced by the 

development of the surface charge. The primary surface charge is determined by the 

reactions of protons with the surface. Surface complexation reactions between the 

surface sites and the ions from the bulk electrolyte at the Stern and in the diffuse layer 

neutralize the surface charge [11]. Surface charge properties are primarily determined 

using proton titration data. These data can be modeled using various electrostatic 

models such as the diffuse double layer, basic Stern, triple layer or CD-MUSIC models 

[1, 3-10]. Most sophisticated models are able to reproduce data for a wide range of 

experimental conditions but rely on the fitting of a large number of parameters whose 

physical significance is not always easy to justify. Moreover, the uniqueness of a set of 

parameters is not always obvious. On the other hand, less sophisticated models rely on 

the fitting of fewer parameters but often fail to reproduce the data under all of the 

experimental conditions studied. At present, there is no consensus on which is the “best 

model” to represent charged surfaces at oxide-water interfaces.  

Of all the physico-chemical parameters characterizing the solid/water interface, the zeta 

potential is particularly important. It is the potential at the supposed slipping plane that 
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separates the stationary and mobile phases in tangential flow of the liquid with respect 

to the surface. For example, in the case of a particle undergoing electrophoresis, 

because of the electrostatic interactions between the applied electric field and the 

hydrated counter-ions in the diffuse layer, the interface develops a surface of shear [12]. 

The electric potential at the slipping plane is of particular interest if we wish to estimate 

the critical coagulation concentration when studying nanoparticle agglomeration, for 

example [5, 12, 13]. The zeta potential is also a key parameter for the study of the 

transport properties of electrically charged materials like oxide and clay minerals [14-

16]. It usually makes it possible to optimize the parameters of the electrostatic surface 

complexation models while assimilating the position of the shear-plane to the position 

of the head end of the diffuse layer [10, 17]. This interpretation has, however, been 

challenged by recent studies on titanium dioxide nanoparticles that show that titration 

data cannot be reproduced together with zeta potential values without having a shear-

plane position that changes as a function of the ionic strength. Bourikas et al. [9] and 

Panagiotou et al. [1] have shown that the shear plane position (in log scale) is linearly 

dependant on the log value of the ionic strength. This physical model leads, however, to 

a surface representation in which the shear-plane can be as far as 210 Å from the surface 

at an ionic strength of 10-4 M (Figure 32 of [1]), the entire volume between the oxide 

surface and this shear-plane being considered to be “stagnant”. Moreover, this physical 

representation of the oxide surface rules out any use of the zeta potential as a constraint 

for surface charge models. The nature of the physical property that causes the separation 

between the “stagnant” diffuse layer and the “mobile” diffuse layer is, however, not 

given. Molecular dynamics studies and X-ray measurements on oxide and 

aluminosilicate surfaces tend to show that diffuse layer water properties (density, 

mobility, molecule orientation) are very similar to those of bulk water [18-20]. 
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Electrophoretic mobility measurements are usually used to determine the zeta potential. 

However, zeta potential estimations can be erroneous due to the uncertainty concerning 

the value of the conversion factor used [12]. This could explain the “observed” shift of 

the shear-plane position as a function of the ionic strength in surface complexation 

models. Numerous authors [18-26] emphasize that the anomalous surface conductivity 

of particles might explain the low zeta potential values (in amplitude) determined from 

electrophoresis compared to values estimated by surface complexation models at the 

OHP and electrical conductivity measurements. They also state that the lateral motion 

of adsorbed counterions at the Stern layer must not be disregarded for some materials 

having a large excess of electrical charge at their surface (like clay minerals or latex 

suspensions). Little work has been done to characterize the surface conductance due to 

the Stern layer for titanium dioxide nanoparticles [27]. In addition, the surface 

conductivity of TiO2 nanoparticles may be strong due to the small size of the 

elementary particles. 

The aim of this work is to study the possible influence of TiO2 nanoparticle surface 

conductivity on its electrophoretic mobility in the hope that this will lead to zeta 

potential values in agreement with those predicted by electrostatic surface complexation 

models (without considering large variations of the distance between the outer boundary 

of the compact layer and the inner boundary of the diffuse layer). Surface speciation 

models are needed to calculate the surface conductance of TiO2. For this reason, the 

model developed recently by Panagiotou et al. [1] and alternative models are critically 

evaluated in the second chapter of this study. In the third chapter, we discuss the 

theories used to convert electrophoretic mobility to zeta potential and calculate surface 

conductance due to the double layer. In the fourth chapter, we describe our modeling 
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strategy and use the proposed methodology to estimate the “intrinsic” zeta potential of 

titanium dioxide P25 in a NaCl electrolyte from electrophoresis. 

 

2. Electrostatic models for titanium oxides  

2.1. Panagiotou et al. model (2008) 

Panagiotou et al. [1] proposed a Triple Plane Model (TPM, [6]) for the titanium oxide 

(P25) solid-solution interface in NaNO3 and KNO3 electrolyte solutions. This model is 

based on a state-of-the-art description of the TiO2 surface properties with regards to 

protonation-deprotonation processes using the recent ab-initio calculations and DFT 

developments for this material. Two main surface functional groups were found to be 

responsible for the surface reactivity: 

Ti2O-0.57 + H+ ⇌ Ti2OH+0.43    log K1, (1) 

TiO-0.35 + H+ ⇌ TiOH+0.65    log K2. (2) 

Total surface site density was fixed at a value of 5.6 sites nm-2 obtained from 

crystallographic considerations. Total surface area was 50 m2 g-1 according to BET 

measurements. 

The surface ionization model was then combined with a triple plane model, and the 

predictions were used together with potentiometric titration, microelectrophoresis and 

streaming potential experiments to describe the electrochemical properties of the TiO2 

surface. Both surface sites were considered to behave similarly with a given cation (Na+ 

and K+) or anion (NO3
-). This simplification enabled the authors to reduce the number 

of adjustable parameters for their model: 

Ti2O-0.57 + Na+ ⇌ Ti2O-0.57–Na+    log KNa, (3) 
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TiO-0.35 + Na+ ⇌ TiO-0.35–Na+    log KNa, (4) 

Ti2OH+0.43 + NO3
- ⇌Ti2OH+0.43 – NO3

-    log KNO3, (5) 

TiOH+0.65 + NO3
- ⇌TiOH+0.65– NO3

-    log KNO3. (6) 

In the triple plane model, the charge of sorbing cations and anions is not attributed to 

only one electrostatic plane but is distributed over the three planes (0, 1, 2), thus adding 

two additional fitting parameters (Δz0 and Δz1 or Δz1 and Δz2) for each sorbed species at 

each surface site (Fig. 1). Again, both surface sites were considered to behave similarly 

with a given cation or anion.  

 

Fig. 1. Schematic drawing of the basic Stern model of Bourikas et al. [9], our basic 

Stern model, the triple plane model of Panagiotou et al. [1], and our extended Stern 

model for a negatively charged surface of titanium dioxide. At a given picture, from left 

to right: metal ions, surface hydroxyls, primary and secondary water layers, compact 

layer, diffuse layer. 
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The parameters of this model are given for a NaNO3 electrolyte background in Table 1. 

We reproduced their model using PHREEQC v2.17 [28]. We were not able to reproduce 

their titration curves using the parameters in the reference publication. The tabulated 

protonation/deprotonation constants (log K1 and log K2) had to be changed slightly in 

order to obtain results in full agreement with the data. Hereafter, we refer to this 

modified model as “Reference model” (Table 1). Surface charge predictions are given 

in Fig. 2 together with surface potential at the 2-plane, which is considered to be the 

head end of the diffuse layer. This parameter can be compared to the zeta potential.  

 

Fig. 2. TiO2 surface charge and potential at the head end of the diffuse layer predicted 

by different surface complexation models at three ionic strengths I in NaNO3. Lines 

depict the reference model (TPM) results while symbols depict the results of alternative 

models (BSM, ESM, Bidentate, Table 1). 
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Panagiotou et al. [1] reported zeta potential values far below the potential values of the 

2-plane (in absolute value). They interpreted this to be a consequence of a shift of the 

shear plane (where the zeta potential is located) from this 2-plane. While calculating the 

distance d from the 2-plane to the shear plane, they found a log-log linear relationship 

between the ionic strength I (in M) and d (in nm): 

7229051150 .Ilog.dlog −−= . (7) 

 

2.2. Alternative models 

While the data of Panagiotou et al. [1] could be very well reproduced by their TPM 

model, it could also be reproduced with the simpler Basic Stern Model (BSM). The 

BSM parameters (Table 1) give surface charge results nearly identical to those of the 

TPM reference model in NaNO3 electrolyte (Fig. 2) although the BSM requires only 

five fitting parameters instead of ten for TPM. This raises the question of the uniqueness 

of the TPM parameter set. In principle, this problem can be overcome by fitting a large 

range of data obtained under the same experimental conditions but testing different 

electrolyte types. Panagiotou et al. [1] provided titration data in a KNO3 electrolyte 

background and were able to fit them adequately only by attributing an association 

constant (log KK = -1.1) and a charge distribution (Δz1 K = 0, Δz2 K = 1) for K+ at the 

surface, while keeping the other parameters constant. A good agreement can also be 

obtained with the BSM model (Fig. 3) adding only an association constant (log KK = -

1.7) for K+. There is a discrepancy between the titration predictions of the two models at 

0.017 M, but the differences increase with salinity, and are therefore greater and 

significant for a salinity of 0.3 M and pH > 9.5. Consequently, the addition of five 

fitting parameters for the triple plane model relies on a very restricted subset of 

experimental data points.  
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Fig. 3. TiO2 surface properties predicted by different surface complexation models at 

three ionic strengths in KNO3. Lines depict the TPM reference model results while 

symbols depict the results of alternative models (Table 1). 

 

The right sides of Fig. 2 and Fig. 3 show that the choice of a given model influences the 

prediction of the electrical potential at the head end of the diffuse layer. For these two 

models, however, predicted potentials are much higher in amplitude than reported zeta 

potentials from electrophoresis [3], corroborating the hypothesis of a shear plane 

located in the diffuse layer.  

As an alternative model, an Extended Stern Model (ESM) can reproduce perfectly the 

reference TPM for surface charge but diminishs the potential at the head end of the 

diffuse layer. One set of this model’s parameters, amongst those tested successfully, is 

given in Table 1. Corresponding titration and potential curves are shown in Fig. 2 and 

Fig.3 for NaNO3 and KNO3 electrolyte backgrounds, respectively.  

According to Panagiotou et al. [1], the high capacitance values of the reference TPM are 

in agreement with theoretical and experimental studies concerning the location of the 
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first two water overlayers and the electrolyte counterions at the rutile surface, taken here 

as  a good analogue of the anatase surface [29-34]. Predota and Vlcek  and Predota et al. 

[31, 33] showed that the first hydration layer at the rutile surface is ~1.8 Å from the 

surface terminal oxygen atoms and that Na+ cations are located at ~1–1.8 Å. These 

distances are in agreement with the capacitance value C1 = 3.2 F m-2 that locates 1-plane 

at d1 = 1.7 Å from the 0-plane, while considering the following equation with the mean 

relative dielectric constant, εr,1, equal to 60 (ε0 is the dielectric constant of the vacuum, 

8.85 × 10-12 C V-1 m-1) : 

)2(1

)2(1,0
)2(1 d

C rεε
= , 

(8) 

where C2, d2 and εr,2 are the capacitance, distance and the mean relative dielectric 

constant between the  1- and 2-planes, respectively. The proposed ESM model has a 

lower capacitance C1 = 2.5 F m-2. It could therefore be considered to not be in 

agreement with above results. However, parameter εr,1 is ill-defined. Taking a value of 

εr,1 = 47 enables us to arrive at the same distance d1 with the ESM model. Consequently, 

available data at the molecular level combined with titration data cannot be used to 

determine which is the best representative model since both εr,1 values are reasonable 

[35]. We were, however, not able to achieve a good fit of titration data with models 

having a C1 value lower than 2.5 F m-2. This seems to confirm the presence of a layer 

with a high capacitance and Na sorption close to the surface. On the contrary, C2 could 

be set at a value as low as 1 F m-2 in the ESM, in marked contrast with the 4.2 F m-2 

value of the reference TPM. The position of the second plane is also subject to 

discussion. Panagiotou et al. [1] considered that the second plane ends the compact 

layer at a distance of 3.4 Å from the surface. However, molecular dynamics calculations 

show significant water density oscillations up to 12 Å from the surface associated with 
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continuous viscosity changes [33]. As a consequence, the choice of a precise location 

for the second plane cannot be easily justified. Moreover, the calculation of the 

capacitance value for the region between the 1- and 2-planes relies heavily on the 

modeler’s choice for εr,2.    

Theoretical calculations indicate that the greatest portion of sorbed Na+ forms bidentate 

complexes. We tried to roughly incorporate this information by considering the 

following equilibria in another alternative model (the “Bidentate” model in Table 1): 

2 Ti2O-0.57 + Na+ ⇌ (Ti2O-0.57)2–Na+    log KNa, (9) 

2TiO-0.35 + Na+ ⇌ (TiO-0.35)2–Na+        log KNa. (10) 

The charge of counter Na+ was attributed partly to the 0-plane and partly to the 1-plane, 

since Na+ was also shown to be partly dehydrated at the surface and engaged in inner 

sphere complexes [34]. Fig. 2 again shows that this model can match almost perfectly 

the reference TPM titration predictions. Note also that, depending on the chosen surface 

complexation model, i.e. TPM, BSM, ESM, or Bidentate, there may be different 

locations and then definitions of the “stagnant layer” (which is not necessarily a 

monolayer of sorbed counterions). For example, in the case of a NaNO3 electrolyte, the 

stagnant layer is located between 1 and 2-planes for TPM, at the 1-plane for BSM, at 

the 1-plane for ESM and between the 0 and 1-planes for Bidentate. 

 

2.3. Implications for mapping the "titanium dioxide/electrolyte solution" interface  

This analysis shows that titration data combined with surface complexation models such 

as TPM or ESM cannot yield a unique and unambiguous set of interfacial parameters. 

Theoretical calculations and modeling at the molecular scale can help us validate the 

model likelihood but uncertainties remain. 
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This suggests that the relationship observed between the position of the shear plane and 

the ionic strength (Eq. (7)) is model dependant. Fig. 2 and Fig. 3 show that the reference 

TPM and the BSM predict nearly identical potentials at the head end of the diffuse 

layer, in agreement with the fact that the reference TPM is an improvement on the BSM 

published earlier by Bourikas et al. [9]. However, the proposed ESM and “Bidentate” 

models predict lower potentials (in absolute value) than the reference model. Predicted 

potentials remain, however, higher in absolute value than commonly reported zeta 

potential from electrophoresis. Consequently, the question of the position of the shear 

plane in relation to the head end of the diffuse layer remains.  

Zeta potential calculations from electrophoresis are also model-dependant. In the 

following chapter, several models to convert electrophoretic measurements to zeta 

potentials are briefly reviewed. 

 

3. From the electrophoretic mobility to the zeta potential 

3.1. Electrokinetic theories 

The most well-known and widely used theory of electrophoresis was developed by von 

Smoluchowski [36, 37]. He studied the movement of the liquid adjacent to a flat, 

electrically charged surface under the influence of an electric field applied parallel to 

the interface. Von Smoluchowski [36] used the Stokes equation and calculated the 

electrical (using Poisson equation) and viscous forces on an element of volume of the 

liquid to express the electrophoretic mobility as a function of the zeta potential.  The 

von Smoluchowski equation linearly relates the electrophoretic mobility μe (in m2 s-1 V-

1) to the electrical potential at the shear plane (ζ, in V):  

ζ
η
εμ =e , 

(11) 
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where η is the dynamic viscosity (in Pa s; η = 0.895×10-3 Pa s at T = 298 K) and ε the 

dielectric permittivity of water (ε = ε0εr = 78.3×8.85×10-12 F m-1 at T = 298 K). The von 

Smoluchowski equation is valid only if the thickness of the diffuse layer is insignificant 

compared to the size of the particle, i.e. for thin double layer, κa >> 1, where κ is the 

inverse of the Debye length (in m-1) and a the particle radius (in m). The inverse of the 

Debye length is given by: 

RT

czF
i

b
ii

ε
κ

∑
=

22

, 

(12) 

RT
IF

ε
κ ××

=
22

, 
(13) 

where F is the Faraday constant (96485 C mol-1), R the gas constant (8.314 J mol-1 K-1), 

ci the ions concentrations (in mol m-3), zi their valency, and I the ionic strength. The 

symbol “b” refers to the bulk ions.  

For small spherical particles having a thick double layer, κa << 1, the applied electric 

field is not influenced by the presence of the particle and the effect of the retardation 

force due to the double layer on the migration of the particle is negligible. Hückel [38] 

considered that the main retardation force is the frictional resistance of the medium. He 

supposed that the electrical conductivity of the particle is the same as that of the 

surrounding medium. Therefore, the electric field is not distorted by the particle. He 

wrote the following equation, which is valid for κa << 1: 

ζ
η
εμ

3
2

=e . 
(14) 

Henry [39, 40] revisited Hückel’s theory by considering that the conductivity of the 

particle is different from that of the surrounding medium. In this case, the applied 

electric field will be distorted so that the isopotential values can be around the particle 
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surface. According to Henry [40], the particle’s conductivity alters the shape of the 

potential distribution of the applied field in the liquid, modifies the fluid motion within 

the electrical double layer, and therefore changes the stresses of the fluid exerted on the 

particle. Consequently, this conductivity leads to the mutual distortion of the applied 

field and the field of the double layer, and hence slows the electrophoretic motion. For 

spherical particles with arbitrary double-layer thickness, Henry [40] wrote: 

( )ζκ
η
εμ spe KKaF ,,

3
2

= , 
(15) 

[ ]1)(21),,( −+= afKKaF sp κλκ , (16) 

sp

sp

KK
KK

22
21

++
−−

=λ , 
(17) 

b

p
pK

σ
σ

= , 
(18) 

b

s

b

s
s a

K
σσ

σ Σ
== , 

(19) 

( ) ( ) ( ) ( )
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16

1)(
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∫∞

−
−

a
dt

t
ta

κ
κ )exp()exp(

96
11 , for κa < 1, 

(20) 

3322
330

2
75

2
9

2
3)(

aaa
af

κκκ
κ −+−= , for κa > 1, 

(21) 

where σ is the electrical conductivity (in S m-1), Σ the surface conductance of the 

electrical double layer, the subscripts “p”, “s”, “b” corresponding, respectively, to the 

particle “interior”, the particle surface and the surrounding medium (the bulk 

electrolyte). The surface conductance expresses the excess of electrical conductivity at 

the solid surface compared to that of the bulk electrolyte. Ks corresponds to the well-
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known “Dukhin number”, Du (see [18, 41] and [42] for more details). According to 

Eqs. (15) to (17) and by replacing Ks with Du, we obtain: 

[ ] ζκ
η
εμ

⎪⎭

⎪
⎬
⎫
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⎪
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⎝

⎛

++
−−

+= 1)(
Du22
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21
3
2 af

K
K

p

p
e . 

(22) 

In the absence of surface conductance and in the case of an insulating particle, Henry’s 

theory leads to von Smoluchowski’s equation for large κa values (f(κa) = 1.5) and 

Hückel’s equation for κa << 1 (thick double layer, f(κa) = 1). For κa >> 1, f(κa) = 1.5, 

and Eq. (22) reduces to: 

ζ
η
εμ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

++
−−

+=
Du22
Du21

1
3
2

p

p
e K

K
. 

(23) 

In the case of insulating particles, Kp = 0, and Eq. (23) corresponds to O’Brien’s formula 

[43] within the limit of a DC applied electric field and disregarding the inertial term in 

his theory. O’Brien [43] developed a complete picture of the frequency dependent 

dielectric response of a dilute suspension of spheres with thin double layers. Note that 

all of the equations presented here, except Smoluchowski’s equation, consider a Debye-

Hückel ionic atmosphere, i.e. that electric potential in the diffuse layer follows a Debye-

Hückel distribution. Consequently, the analytical equations that we use to estimate the 

zeta potential from the electrophoretic mobility are valid for low zeta potentials (⎜ζ ⎜≤ 

25.7 mV in the case of 1:1 electrolyte at T = 298 K), but they can still be applied for 

zeta potentials of greater amplitude [12]. 

In addition, Eqs. (11) to (23) do not consider spheroidal particles, particle volume 

fraction, polydispersity of the sample, i.e. agglomerates of different sizes, and diffuse 

layer overlapping. Several electrokinetic models make it possible to estimate surface 

conductance for spheroidal particles (for example, [44]), consider polydispersivity of 

the sample and nanoparticles agglomeration [45], and diffuse layer overlapping [46]. 
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Moreover, Mangelsdorf and White’s numerical model, which takes into account particle 

size effects and the adsorption of ions and their mobility in the inner part of the EDL 

[21], can be more accurate than the analytical solutions we use, especially at low ionic 

strength and at pH values far from the PZC where the amplitude of the surface electric 

potential is high. 

However, the electrical conductivity of the particle “interior” σp can be determined 

using the so-called differential self-consistent model [47, 48]. This model considers 

small contiguity between the particles and allows the determination of the electrical 

conductivity of the agglomerate corresponding to the final concentration of inclusions 

(here the elementary nanoparticles of conductivity σe) by addition of infinitesimal 

portions of inclusions: 

( ) ∫∫
−

−
=

−
+ φσ

σ
σ

σσσ
σσ 1

0 13
2

Ω
dΩdp

b e

e , 
(24) 

where φ is the intra-aggregate porosity, Ω = v/(v+V) is the volume fraction of the 

elementary nanoparticles in the agglomerate with v and V the total volume (in m-3) of 

elementary particles  and of water, respectively. By integrating Eq. (24), we obtain: 

φ=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

D

p

b

eb

ep

σ
σ

σσ
σσ

, 
(25) 

where D = 1/3 in the case of spherical elementary particles. Eq. (25) has been 

generalized to non-spherical particles, but it is not very practical because it is an 

equation of the form ),,,,( pebp σσσDfσ φ= . Revil [48] found an analytical solution of 

Eq. (25) by considering D = 1/2 for disk-shaped particles: 

( ) ( ) ⎥⎦
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(26) 
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2 , 

(27) 

2−= φF . (28) 

According to Revil [48], D = 1/2 corresponds to a particle’s shape usually found in most 

porous media. In addition, following the approach of [45], the electrophoretic mobility 

due to the polydispersity of the sample, eμ , i.e. to agglomerates possessing different 

sizes, can be calculated by: 

∑

∑
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aaaf
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1

3

)(

)(μ
μ , 

(29) 

where N is the number of different radii, f(ai) represents the discretized version of the 

Particle Size Distribution (PSD), Δai the radius intervals, and i
eμ  the electrophoretic 

mobility of agglomerates with radius ai ± Δai/2. According to Eq. (29), the 

electrophoretic mobility of the polydisperse system is the volume average of the 

mobilities of particles with different sizes in the distribution.  

Henry [40] and O’Brien [43] considered that only the counterions in the diffuse layer 

are responsible for the surface conductivity. They did not consider the influence of the 

Stern layer on particle surface conductivity [18-23]. According to these authors, the zeta 

potential of (electrically) charged suspensions like polystyrene lattices, determined from 

electrophoresis, are lower in amplitude than the zeta potential values estimated from 

electrical conductivity measurements. In the case of electrophoresis, these authors 

assume that the lateral movement of ions at the Stern layer in response to the applied 

electric field can explain such discrepancy. The presence of mobile counterions at the 

Stern layer and in the diffuse layer lowers the amplitude of zeta potentials inferred from 
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mobility measurements and raises those from conductivity measurements, compared to 

the zeta potentials that correspond to the intrinsic particle charge. 

The “anomalous” surface conductance linked to the Stern layer, i.e. to ions below the 

shear plane, can be determined for oxide minerals using electrical conductivity 

measurements [25, 27, 42, 49] or a surface complexation model like a Triple Layer 

Model (TLM, [15, 50]) where the associated equilibrium sorption constants are 

calibrated by titration experiments. Surface complexation models calculate the excess of 

counterions at the interface and thereby make it possible to estimate the (specific) 

surface conductance of the particle [50, 51]. 

 

3.2. Determination of the surface conductance 

3.2.1. The diffuse layer surface conductance 

The surface conductance of the Electrical Double Layer (EDL) is the enhanced 

conductivity due to the presence of a double layer at the particle surface ([40, 49-51]; 

see Fig. 4). We consider here the surface conductance due only to the presence of the 

diffuse layer at the particle surface. In the following chapter, we will consider the 

influence of the Stern layer on the surface conductance. 
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Fig. 4. Schematic representation of the electro-chemical properties of a suspension of 

spherical oxide nanoparticles. The particle has a local excess of electrical conductivity 

at its interface σ(χ). The surface conductance Σs is estimated by integrating σ(χ) - σb 

over the thickness of the Stern and diffuse layers. 

 

According to Revil and Glover [51], the surface conductance Σs (in S) can be described 

by the individual specific surface conductance of each ion in the diffuse layer, s
iΣ , 

∑=
i

s
iis ez ΣΣ . (30) 

The total surface conductance sΣ  is made up of an electro-migration, e
sΣ , and an 

electro-osmotic surface conductance, os
sΣ , 

os
s

e
ss ΣΣΣ += . (31) 

The electro-migration surface conductance is due to the excess of Ohmic conductivity 

in the EDL [15], 
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[ ] χσχσ
χ

dD

b
e
s ∫ −=

0
)(Σ , (32) 

where χ represents the surface/solution distance in m and χD is the total thickness of the 

diffuse layer (usually, χD = 2κ-1). The parameters σ(χ) and σb are the electrical 

conductivity at the solid/solution interface and in the bulk pore water defined, 

respectively, by: 

∑=
i

s
i

s
ii cFz )()( χβχσ , 

(33) 

∑=
i

b
i

b
iib cFz βσ , 

(34) 

where bs
i

,β  is the ion mobility (in m2 s-1 V-1) at the particle surface and in the bulk pore 

water. The electrical conductivity of the solution due to electro-migration is given by an 

equivalent Ohm’s law determined using the generalized Nernst-Planck equations and 

the electrochemical potential equations for the ion species [14, 52] (electro-osmosis is 

neglected). The local electrical conductivity σ(χ) is given by analogy with the free 

electrolyte conductivity ([51]). By incorporating Eqs. (33) and (34) in Eq. (32), we 

obtain: 

[ ]∫ ∑ −= D dccFz
i

b
i

b
i

s
i

s
ii

e
s

χ
χβχβ

0
)(Σ . (35) 

According to Eq. (35), by considering the same ion mobility at the interface (diffuse 

layer here) and in the bulk pore water, i.e. i
b
i

s
i βββ == , we can determine e

sΣ  [15, 53]: 

[ ]∑ ∫ −=
i

b
i

s
iii

e
s dcczF D χχβ

χ

0
)(Σ , (36) 

∑ ∫
⎭
⎬
⎫

⎩
⎨
⎧

−⎥⎦
⎤

⎢⎣
⎡ ±
−=

i

ib
iii

e
s d

RT
FzczF D χχψβ

χ

0
1)(expΣ , 

(37) 

( )κχd −= exp)( ψχψ , (38) 
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where ψd is the electric potential at the head end of the diffuse layer. The term ± 

corresponds to the sign of the electrical charge associated with the species i (“+” for 

cations and “–” for anions).  

It is relatively easy to find an analytical solution for the ion contribution to the surface 

conductance using Eqs. (30), (37)-(38) and linearizing the exponential function of the 

Boltzmann distribution ([51] and Eqs. (191) to (194) of [54]): 

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ ±

−≈ ∑− 1
2

exp2Σ 1

RT
FzczF dib

ii
i

i
e
s

ψβκ , 
(39) 

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ ±

−≈ − 1
2

expNa2Σ 1

RT
Fzc dib

ii
e
i

ψβκ , 
(40) 

where Na is the Avogadro Number (6.022×1023 sites mol-1) and by considering a  

diffuse layer having a thickness of 12 −= κχD . 

At the surface of the titanium dioxide particle (for conditions other than the IEP and for 

low ionic strength, typically ≤ 0.01 M for oxide minerals, [10]), counter-ions are 

predominant in the diffuse layer. When an electric field is applied, it results in a solvent 

convection and, consequently, a surplus conductivity called electro-osmotic 

conductivity. The electro-osmotic contribution to the surface conductance is described 

by [51]:  

∫= D dos
os
s

χ
χχβχρ

0
)()(Σ , (41) 

∑=
i

os
ii

os
s ez ΣΣ , (42) 

( ) ∑ ±=
i

s
iiczF )()1( χχρ , (43) 

[ ]dos ψχψ
η
εχβ −= )()( , 

(44) 
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where βos is the electro-osmotic mobility (in m2 s-1 V-1) and ρ the volume charge density 

in the diffuse layer (in C m-3). According to Bikerman [55]: 

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ ±
−≈ ∑− 1

2
expNa4Σ 1

RT
FzcRT di

i

b
i

os
s

ψκ
η
ε . 

(45) 

The ion contribution of the electro-osmotic surface conductance is determined using 

Eqs. (42) and (45): 

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ ±
−≈ − 1

2
expNa4Σ 1

RT
Fzc
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RT dib

i
i

os
i

ψκ
η
ε . 

(46) 

By combining Eqs. (40) and (46), the total ion contribution to the surface conductance 

is given by: 

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ ±
−= − 1

2
expNa2Σ 1

RT
FzcB dib

ii
s
i

ψκ , 
(47) 

i
ii ez

RTB
η
εβ 2

+= . 
(48) 

In Eqs. (47) and (48), we have assumed that the ion mobilities are the same in the bulk 

electrolyte and in the diffuse layer. These equations correspond those of Bikerman [55] 

for characterizing the ion contribution to the surface conductance of the particle (due to 

the applied electric field). In his approach, the mobile counterions and coions in the 

diffuse layer are only responsible for the surface conductance. Moreover, according to 

Eq. (48), the ionic electro-osmotic contribution to the surface conductance must not be 

neglected. For example, for a NaCl solution and at T = 298 K, the Na+ and Cl- ion 

mobility values in the bulk electrolyte are 5.17×10-8 and 7.89×10-8 m2 s-1 V-1, 

respectively [15]. The second term in Eq. (48), for zi = 1, ε = 78.3×8.85×10-12 F m-1, η = 

0.895×10-3 Pa s, F = 96485 C mol-1, R = 8.314 J mol-1 K-1, and T = 298 K, is ∼ 3.98×10-

8 m2 s-1 V-1, which is of the same order of magnitude as the first term. 
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For a binary symmetric electrolyte, z+ = z- = z, and the surface conductance is 

determined using Eqs. (30) and (47): 

⎟
⎠
⎞

⎜
⎝
⎛ −= − 1

2
cosh4Σ 1

RT
FzBcFz db

s
ψκ , 

(49) 

assuming that 

BBB == ++ )()( , (50) 

and 

bbb ccc == −+ )()( . (51) 

Eq. (49) assumes that both anions and cations have the same mobility. By using Eqs. 

(19), (34), (49), and the Nernst-Einstein relationship for ion diffusivity, 

Fz
RTD i

i
β

= , 
(52) 

we obtain Bikerman’s equation [25, 49, 55]: 
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(53) 

In Eq. (53), the influence of pH on surface conductivity is not taken into account. 

Taking into consideration the presence of H+ and OH- ions, we obtain the following 

equation for surface conductance, according to Eqs. (30), (47), and for a binary 

symmetric background electrolyte like NaCl or KCl [50]:  
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⎞

⎜
⎝
⎛×++ −

−
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2
exp101000 OH

ppH
)()( RT

FzBBc dKb f ψ , (54) 

where pKf is the negative log of the dissociation constant of water (14 at T = 298K).  
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3.2.2. The Stern layer and total surface conductance 

For some highly-charged minerals like clays, the contribution of the compact Stern 

layer to surface conductivity must not be neglected [53]. However, it has not been 

extensively studied for titanium dioxide nanoparticles. According to several authors 

(e.g. [18-23]), both the diffuse and Stern layers contribute to the specific surface 

conductance: 

Sterndiffuse ΣΣΣ sss += . (55) 

The Stern layer contribution can be described by [50, 53]:  

∑=
i

iiis ez StStStern ΓΣ β , (56) 

where the superscript “St” corresponds to the Stern layer, and StΓi  is the surface site 

density of adsorbed counterions at the Stern layer (in sites m-2). Eq. (56) describes the 

lateral movement of adsorbed cations and anions [56, 57], and consequently assumes 

that the ion species are not immobile in the Stern layer [16]. The ion mobility values at 

the Stern layer are still relatively unknown. For clay minerals and quartz, Revil and 

Glover [50] and Revil et al. [58] considered that the ion mobilities of several cations 

like Na+, K+, Ca2+ are at least one order of magnitude smaller than those in the bulk 

electrolyte. For silica minerals, Leroy et al. [15] have hypothesized that the surface ion 

mobilities are similar to those of the bulk. Molecular dynamics simulations at the 

solid/water interface must be of particular importance to characterize the ion and water 

mobilities in the compact layer. For example, in their work concerning the 

characterization of the surface properties of rutile, Predota et al. [32] considered a 

surface water mobility that is 10% of the bulk ion mobility at 3.7 Å from the surface. 

According to Eqs. (54) to (56), the total surface conductance of a particle can be 

described by: 
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As seen by Eq. (57), it is easy to estimate surface conductance if the electrical potential 

at the head end of the diffuse layer ψd and the surface sites tSΓi are known. These 

parameters can be estimated by a complete surface complexation model of the 

TiO2/water interface. The ion mobilities of the counterions in the compact layer tS
iβ  are 

the only unknown. 

Below, we use this approach to determine the zeta potential of TiO2 nanoparticles using 

the particle size and the electrophoretic mobility data of Foissy [3]. 

 

4. Comparison with experimental data 

4.1. Modeling strategy 

Firstly, the function f(κa) is determined according to Eqs. (12), (20) and (21). Secondly, 

titanium dioxide surface complexation models estimate the surface conductance of the 

double layer Σs (Eq. (57)). The subsequent calculation of the electrical conductivity of 

the bulk electrolyte based on its ion composition, σb, (Eq. (34)) and the radius of an 

agglomerate made up of elementary particles, a,  make it possible to determine the 

Dukhin number, Du (Eq. 19). Thirdly, the parameter corresponding to the electrical 

conductivity of the agglomerate’s interior, Kp, is calculated thanks to Eqs. (26) to (28) 

for a given value of the intra-aggregate porosity φ and elementary particle’s radius ae. 

Finally, the zeta potential is estimated from the electrophoretic measurements using the 

calculated values of f(κa), Du, Kp, and Eq. (22) for the case of Henry’s theory (see Fig. 

5). By comparison, the von Smoluchowski equation (Eq. (11)) is also used to convert 
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electrophoretic mobilities to zeta potential values. The surface complexation 

calculations were done with PHREEQC v2.17 [28] and the conversion calculations 

were done using a MATLAB routine.  

 

Fig. 5. Modeling strategy for determining the zeta potential from electrophoresis. 

 

Raw electrophoretic measurements are necessary for these calculations. Unfortunately, 

only pre-processed zeta potentials are available in most publications. Foissy [3] 

provides electrophoretic measurements for titanium dioxide P25 for a wide range of 

electrolyte concentrations but in a NaCl electrolyte background. According to the 

comparative modeling of Bourikas et al. [9], NO3
- and Cl- behave similarly at the TiO2 

surface. This could be verified by satisfactorily reproducing the surface charge data that 

Ridley et al. [2] obtained on the anatase ST-01 using the same model as the ESM listed 

in Table 1 and the same parameters for Cl- as for NO3
- (not shown). 

 

4.2. Input data of the electrokinetic model 

Foissy [3] did titration and electrophoretic measurements on TiO2 P25 (Degussa, 

Germany). The crystalline form is anatase (95 %). The density measured by helium 
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pycnometry after drying is 3.76 g cm
-3

. The estimated specific surface area (using N2 

adsorption and immersion calorimetry) is 54 ± 3 m2 g-1. The size of an elementary 

particle is approximately 30 nm, but P25 nanoparticles can form aggregates measuring 

several micrometers [1]. Foissy [3] measured electrophoretic mobilities for pH values 

comprised between 4 and 11, and salinities (NaCl) of 10-4, 10-3, and 10-2 M. 

Furthermore, he used X-ray measurements to obtain the particle size distribution as a 

function of pH at 10-3 M. 

At 10-3 M, we use a normal distribution in agreement with the particle size distribution 

measured by Foissy [3] and calculate the Debye length to estimate the function f(κa).  

For other salinities, we also use a normal distribution for the particle size. Eqs. (12), 

(48) and (57) make it possible to calculate the specific surface conductance using the 

values of ψ2 (ψ2 = ψd here), St
NaΓ , St

ClΓ determined by the ESM surface complexation 

model (Fig. 6). The Na+, Cl-, H+ and OH- ion mobility values in the bulk and diffuse 

layer (βi) are 5.17, 7.89, 36.20, and 20.49×10-8 m2 s-1 V-1, respectively (from 

PHREEQC’s phreeqd.dat database). The ion mobilities at the Stern layer remain 

unknown. We used ii ββ =St , according to the surface conductivity model of Leroy et 

al. [15] for silica minerals, to estimate surface conductance. Surface conductance 

increases significantly with salinity and with the difference between pH and IEP (6.5 

here) (Fig. 6). Note that we restrict the investigated pH range at 10-4 and 10-3 M to have 

a constant ionic strength. 
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Fig. 6. The electrical potential at the 2-plane, the surface site densities of adsorbed 

sodium and chloride at the Stern layer (1-plane), and the surface conductance versus pH 

for three salinities (NaCl). 

 

According to Eq. (19), the Dukhin number (Du) is determined using (1) a normal 

distribution for the particle size a (in agreement at 10-3 M with the particle size 

distribution measured by Foissy [3]), (2) the estimated surface conductance Σs, and (3) 

the electrical conductivity of the bulk electrolyte σb. The fitting parameters are the intra-

aggregate porosity φ and the PSD at 10-4 and 10-2 M. 

 

4.3. Zeta potentials from electrophoretic data 

According to the particle size measurements of Foissy at 10-3 M [3] (Fig. 7), titanium 

dioxide nanoparticles are highly agglomerated at pH values close to the IEP, leading to 

20-µm agglomerates. At extreme pH values (pH = 4, pH =10) agglomerates reach sizes 



   

30 

comprised between one and three micrometers. Thus, κa >>1 and increases significantly 

at pH values close to the IEP. As a result, the Dukhin number is low in amplitude except 

for basic pH where it increases strongly (Fig. 7). Zeta potentials inferred from 

electrophoresis using our model are in very good agreement with the ESM predictions 

assuming ψ2 = ψd (Fig. 7). We use φ = 0.4, which is in accordance with the intra-

aggregate porosity value measured recently by Xu et al. [59] for P25 (φ = 0.38) from the 

N2 desorption isotherm using the cylindrical pore model (BJH method). The zeta 

potential calculations using the Smoluchowski equation are also presented by 

comparison. Their amplitudes are not in agreement with the ESM predictions because 

the Smoluchowski equation neglects surface conductivity. 

PSD found at other salinities seem to be physically realistic (Fig. 8). Size of 

agglomerated nanoparticles is pH-and salinity-dependent, and increases significantly 

close to the IEP and at high ionic strength. The Dukhin number also diminishs 

significantly in these physico-chemical conditions. In addition, for 10-4 and 10-2 M, zeta 

potentials calculated from electrophoresis using our modeling approach are also in very 

good agreement with the ESM predictions (Fig. 9), except for pH values close to the 

IEP. We use φ = 0.4. 

Our modeling results suggest that the shear plane may be located close to the OHP, in 

contradiction with the hypothesis of a stagnant diffuse layer having a salinity-dependant 

thickness at the TiO2 water interface [1, 9]. 
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Fig. 7. Input data of the model of Henry [40] and zeta potentials versus pH at 10-3 M 

from electrophoresis (full triangles, our model; empty triangles, Smoluchowski 

equation’s predictions). The line on zeta potential figure is the ESM prediction 

assuming ψ2= ψd. 

 

Fig. 8. Input data of the model of Henry [40] versus pH at 10-4, 10-3, and 10-2 M. 
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Fig. 9. Zeta potentials versus pH at 10-4, 10-3, and 10-2 M from electrophoresis. The lines 

are the ESM predictions assuming ψ2= ψd. 

 

5. Conclusions 

We have developed an extended Stern layer model to characterize the electrochemical 

properties of titanium dioxide in a 1:1 electrolyte (NaCl). This model significantly 

lowers the amplitude of electrical potential at the OHP compared to that of other recent 

surface complexation models [1, 9] without altering the quality of the titration data 

predictions.  

Henry’s model [40] is used to convert electrophoretic mobility measurements to zeta 

potential values taking into account agglomerate’s size and surface conductance. 

Electrical conductivity inside the agglomerate is calculated using the differential self-

consistent model of Sen et al. [47]. The theory of particle’s surface conductance due to 

the diffuse and Stern layers is described in depth.  

By combining the excess of electrical charge calculated at the compact Stern layer and 

in the diffuse layer with Henry’s equations [40], we show that the shear plane may be 

located close to the OHP, contradicting the assumption of the presence of a stagnant 

diffuse layer at the TiO2/water interface as mentioned by Bourikas et al. [9] and 

Panagiotou et al. [1]. 
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In the future, we will use a numerical model to convert electrophoretic and electrical 

conductivity measurements to zeta potential values under arbitrary conditions including 

high zeta potential amplitudes, particle volume fraction, polydispersity of the sample, 

diffuse layer overlapping, and surface conductance. In addition, we will compare our 

modeling results to a much more refined set of experiments (spherical and 

monodisperse/polydisperse particles) including electrical conductivity measurements.  
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Table 1. Surface and interface parameters for the Panagiotou et al. model [1] and 

alternative models. 

 

Parameters Original 

Panagiotou et 

al. model 

Reference 

model (TPM)

BSM ESM Bidentate 

log K1 7.8 7.6 7.6 7.55 7.55 

log K2 4.6 4.2 4.2 4.15 4.15 

log KNa (K) -1.7 (-1.1) -1.7 (-1.1) -1.7 (-1.7) -1.4 (-1.1) -1 

log KNO3 -2.3 -2.3 -99* -1.5 -1.5 

Δz0 Na - - - - 0.55 

Δz1 Na (K) 0.7 (0) 0.7 (0) n.a. 1 (0.7) 0.45 (0.7) 

Δz2 Na (K) 0.3 (1) 0.3 (1) n.a. 0 (0.3) 0 (0.3) 

Δz1 NO3 -0.7 -0.7 n.a. -1 -1 

Δz2 NO3 -0.3 -0.3 n.a. 0 0 

C1 (F m-2) 3.2 3.2 2.5 2.5 2.5 

C2  (F m-2) 4.2 4.2 ∞ 1 1 

* In the BSM, NO3
- anions act as indifferent anions 
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Figure captions 

Fig. 1. Schematic drawing of the basic Stern model of Bourikas et al. [9], our basic 

Stern model, the triple plane model of Panagiotou et al. [1], and our extended Stern 

model for a negatively charged surface of titanium dioxide. At a given picture, from left 

to right: metal ions, surface hydroxyls, primary and secondary water layers, compact 

layer, diffuse layer. 

Fig. 2. TiO2 surface charge and potential at the head end of the diffuse layer predicted 

by different surface complexation models at three ionic strengths in NaNO3. Lines 

depict the reference model (TPM) results while symbols depict the results of alternative 

models (BSM, ESM, Bidentate, Table 1). 

Fig. 3. TiO2 surface properties predicted by different surface complexation models at 

three ionic strengths in KNO3. Lines depict the TPM reference model results while 

symbols depict the results of alternative models (Table 1). 

Fig. 4. Schematic representation of the electro-chemical properties of a suspension of 

spherical oxide nanoparticles. The particle has a local excess of electrical conductivity 

at its interface σ(χ). The surface conductance Σs is estimated by integrating σ(χ) - σb 

over the thickness of the Stern and diffuse layers. 

Fig. 5. Modeling strategy for determining the zeta potential from electrophoresis. 

Fig. 6. The electrical potential at the 2-plane, the surface site densities of adsorbed 

chloride and sodium at the Stern layer (1-plane), and the surface conductance versus pH 

for three salinities (NaCl). 

Fig. 7. Input data of the model of Henry [40] and zeta potentials versus pH at 10-3 M 

from electrophoresis (full triangles, our model; empty triangles, Smoluchowski 

equation’s predictions). The line on zeta potential figure is the ESM prediction 

assuming ψ2= ψd. 
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Fig. 8. Input data of the model of Henry [40] versus pH at 10-4, 10-3, and 10-2 M. 

Fig. 9. Zeta potentials versus pH at 10-4, 10-3, and 10-2 M from electrophoresis. The lines 

are the ESM predictions assuming ψ2= ψd. 

 

 


