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Abstract 

 

Reactive transport modelling was used to simulate solute transport, thermodynamic reactions, ion 

exchange and biodegradation in the Porewater Chemistry (PC) experiment at the Mont Terri 

Rock Laboratory. Simulations show that the most important chemical processes controlling the 

fluid composition within the borehole and the surrounding formation during the experiment are 

ion exchange, biodegradation and dissolution/precipitation reactions involving pyrite and 

carbonate minerals. In contrast, thermodynamic mineral dissolution/precipitation reactions 

involving alumo-silicate minerals have little impact on the fluid composition on the time-scale of 

the experiment. With the accurate description of the initial chemical condition in the formation in 

combination with kinetic formulations describing the different stages of bacterial activities, we 

succeeded in reproducing the evolution of important system parameters, such as the pH, redox 

potential, total organic carbon, dissolved inorganic carbon and sulphate concentration. Leaching 

of glycerol from the pH-electrode may be the primary source of organic material that initiated 

bacterial growth, which caused the chemical perturbation in the borehole. Results from these 

simulations are consistent with data from the over-coring and demonstrate that the Opalinus Clay 

has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. This 

buffering capacity can be attributed to the carbonate system as well as to the reactivity of clay 

surfaces.  
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1. Introduction  

Over the past two decades, reactive transport models have evolved as valuable diagnostic and 

prognostic tools and have made a significant contribution to elucidating the inherently complex 

dynamics of natural and engineered environments (Appelo, 1994; Steefel et al., 2003; Steefel et 

al., 2005; Gaucher and Blanc, 2006; Appelo et al., 2008; Gaus et al., 2008; Han et al., 2010). 

These models provide the theoretical framework for simulating coupled thermal-hydraulic-

chemical-biological processes within earth systems. As such, these models constitute a basis for 

testing concepts and hypotheses and for integrating new experimental, observational and 

theoretical knowledge about geochemical, biological and transport processes (e.g. Steefel and 

Lichtner, 1994; Lichtner et al., 1996; Appelo et al., 1998; Maher et al., 2009).  

The Porewater Chemistry (PC) experiment in the Mont Terri Laboratory was designed to 

improve our understanding of the compositional characteristics and the buffering mechanisms of 

the porewater in the Opalinus Clay. For that purpose, a vertical borehole of 52 mm diameter was 

drilled to a depth of 10.10 m. The bedding dips at an angle of about 45º to the SE. The first 5 

meters of the borehole were drilled with air. For the remaining 5.1 m, nitrogen was used in order 

to minimise ingress of molecular oxygen and hence oxidation of pyrite and organic matter around 

the borehole wall. Immediately after drilling, the borehole was filled with Ar. The downhole 

equipment including the 4.5 m long screen made of porous (40 µm mesh size) low pressure 

polyethylene with a porosity of 0.3 and a 0.33 m long hydraulic mechanical packer was emplaced 

into the borehole. The remaining part of the borehole was filled with epoxy resin (Sikadur 52).  

The borehole was filled with synthetic porewater (2.8 L) which had been previously 

saturated with an Ar/CO2 gas mixture corresponding to a pCO2 of 10-3.5 bar, as in air. This 

synthetic porewater was traced to keep track of transport-controlled exchange of solutes between 
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the borehole and the surrounding formation. More details about the design and results of the 

experiment are summarized in Wersin et al. (This Issue-a). The original focus of this experiment 

was to obtain high-quality data on the porewater composition and thus to reduce uncertainties in 

pH/pCO2 and Eh. However, unexpected microbial activity in the borehole observed after about 

nine months led to a revised research program with the following objectives: 

i. to identify biogeochemical processes occurring in the borehole and describe these 70 

quantitatively 

ii. to obtain diffusion parameters of injected conservative tracers 72 

iii. to identify the source of organic carbon for microbial degradation 73 

iv. to draw conclusions on the findings with regard to conditions of the clay host rock around a 74 

nuclear waste repository 

To understand the complexity of processes and to identify and/or quantify crucial system 

parameters of the PC experiment, modelling efforts were initiated by different groups involved in 

the project. These efforts were only loosely coordinated and different groups were allowed to use 

a software package of their choice and were free to decide on how to approach the task. 

Consequently, it was never expected that the different groups would produce exactly the same 

results. A summary of these modelling efforts can therefore only touch on some of the aspects 

that had to be taken into account by the groups during the design of their model (e.g. model 

dimensions and geometry, initial and boundary conditions, choice of parameters, choice of 

relevance) and the reasons for differences in the model outputs. 

The following section 2 aims at giving an overview of the reactive transport simulations 

performed over the course of the PC-experiment. This overview serves as an introduction to a 

model, discussed in detail in section 3 of the paper, that is almost fully capable of reproducing the 

evolution of the borehole fluid during the five years of the experiment, as well as the observations 
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made on the over-core samples. The geochemical and transport properties of the Opalinus clay 

formation are then discussed in the light of modelling results. 

 

 

2. Overview of previous reactive transport simulations of the PC experiment  

Over the course of the PC experiment, reactive transport models that couple diffusive transport 

with chemical reactions were designed and simulations were carried out in a collective effort by 

different groups involved in the PC experiment. The aim was to develop models that reproduce 

not only the time series of tracer concentrations but also time series of reactive species and the 

evolution of the redox state and the pH of the borehole fluid. A model that successfully 

represents the measured time series of borehole fluid compositions can then be used to identify 

critical processes and to quantify system parameters and properties within the borehole as well as 

in the surrounding rock. Furthermore, a working model can be used to make predictions about the 

system’s behaviour in the future and/or to test what-if scenarios that assess the system’s response 

to different physical or chemical conditions (ANDRA, 2005).  

Common to all reactive transport models was the incorporation of the processes that were 

thought to control the chemical evolution of the system: diffusive transport, ion exchange, 

biodegradation and mineral precipitation/dissolution reactions. Even though these were 

considered the processes driving the chemical evolution of the system, relatively little was known 

about the relative importance of each of these processes and if and how these processes interact. 

One aim of coupled modelling was to elucidate some of these issues.  

Integrating transport and chemistry into a model entails a much larger number of system 

parameters that need to be constrained than in a model that considers non-reactive transport 

alone. Because few constraints were available for conditions in the surrounding rock, values for 
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critical parameters regarding conditions outside the borehole could only be based on “educated 

guesses” and were therefore associated with a large degree of uncertainty (see discussion in 

Gaucher and Blanc, 2006). Owing to this uncertainty and other factors, which include among 

many others: 1) the use of different software packages and geochemical datasets, 2) the choice of 

parameters and the degree of detail, 3) the choice and the mathematical implementation of 

processes and the couplings between them, 4) the choice of initial and boundary conditions, 5) 

species dependent or independent diffusion, 6) uniform or species dependent accessible 

porosities, it was expected that the results from different modelling efforts could show substantial 

differences but should agree at least qualitatively and in some aspects quantitatively.  

The earliest simulations that couple diffusive transport with chemical reactions were 

carried out by Arcos et al. (2003). Reactive transport was modelled in one dimension with the 

PHREEQC (Parkhurst and Appelo, 1999) code. These simulations already included the most 

important processes that were thought to control the chemistry of the porewater: the degradation 

of organic matter via sulphate reduction, ion exchange reactions and mineral 

precipitation/dissolution reactions. Of these processes, the degradation of organic matter was 

thought to be that which dominates the behaviour of the system in agreement with preliminary 

microbiological analyses (Stroes-Gascoyne et al., This Issue). Biodegradation was formulated as 

 

2CH2O + SO4
-2 = H2S + 2HCO3

- Reaction 1

 

and incorporated into the model via a Monod-type rate equation. 

Overall, the model was able to reproduce on-line measurements of critical parameters 

such as the pH and Eh reasonably well and confirmed the significance of biodegradation as the 

most prominent process in controlling the redox evolution of the system. Discrepancies between 
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measured and modelled data, in particular those related to sulphate and inorganic carbon, were 

attributed to the over-simplification of the formulation for organic matter degradation, the 

selection of the type of dissolved organic matter and the choice of kinetic parameters used in the 

degradation reactions. 

Tournassat and Gaucher (2004) used the PHAST code (Parkhurst et al., 2004) to simulate, 

in 1D, the evolution of the borehole fluid composition by using constraints from isotopic data 

(e.g. δ13C), dissolved methane, the SO4
-2 concentration, the pH and the alkalinity. They 

concluded that methanogenic and sulphate reducing bacteria in the borehole led to a redox 

zonation that causes methanogenesis and methane oxidation to occur simultaneously. The redox 

state of the system is controlled by the S(-2)/S(+6) couple, whereby the S(-2) and S(+6) activities 

are buffered by pyrite (FeS2) and a Fe-carbonate-phase (FeCO3). The authors suggested that the 

system is in a redox disequilibrium that is used by sulphate-reducing bacteria to produce 

methane, acetate and various organic acids.  

Grandia et al. (2006) used PHREEQC to implement a kinetic formulation for the 

degradation of acetone through a carboxylation process: 

 

CH3COCH3 + HCO3
- = 2 CH3COO- + H+ Reaction 2

 

and a Monod-type rate equation for the subsequent degradation of acetate to carbonate ions via 

sulphate reduction: 

 

CH3COO- + SO4
-2 = 2 HCO3

- + HS- Reaction 3
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were adjusted to match the measured data from the PC experiment and the simulations were able 
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Alt-Epping et al. (2006) used FLOTRAN (Lichtner, 2007) to run simulations of a 

cylindrical model with radial coordinates, which accounted for the oblique angle between the 

borehole and the bedding. These simulations were fully coupled, which implies that these 

simulations also considered the feedback between porosity changes following mineral 

dissolution/precipitation reactions and diffusive transport. This study incorporated many 

parameters and built on results from previous studies: the formulation and selectivity coefficients 

for ion exchange were taken from Tournassat and Gaucher (2004) and biodegradation was 

formulated in an analogous manner to that of Grandia et al (2006). Simulations included a 

sensitivity analysis that compared different model outcomes as a function of the initial borehole 

fluid composition.  

To elucidate the importance of individual reaction processes (ion exchange, 

biodegradation, mineral dissolution/precipitation), different model scenarios included a 

successive increase in model complexity, from the implementation of a single process only to the 

implementation of all reaction processes and a full coupling between them. The results from the 

simulations showed that the different initial compositions of the borehole fluid (scenarios 1-3) 

have relatively little impact on the evolution of the system. Without ion exchange or 

biodegradation, the reactivity of the system is low, which is consistent with very small volumes 

of calcite, dolomite and siderite precipitation (Figure 1). Species concentrations in the borehole 

either increase or decrease monotonously, which indicates that these changes are primarily 

controlled by diffusive exchange with the surrounding rock (Figure 2).  
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Figure 

2). In the borehole, organic matter reduces sulphate to sulphide, which subsequently diffuses 

outward into the formation where it precipitates as pyrite (Figure 1). The uptake of sulphide into 

pyrite outside the borehole steepens the total sulphur concentration profiles, thus enhancing 

outward diffusion and causing a decrease in the total sulphur concentration in the borehole fluid 

(Figure 2).  

These results demonstrate the buffering capacity of the system, which is due primarily to 

ion exchange and the buffering by carbonate phases. Biodegradation exerts the strongest impact 

on the evolving fluid composition and causes the precipitation of pyrite. These simulations were 

successful in describing qualitatively the processes occurring in the borehole and the surrounding 

formation. The simulations also suggest that by selecting only those constituents and processes 

that are relevant to the chemical evolution of the system, it is possible to design a “minimal” 

model that is simple yet fully capable of reproducing quantitatively the evolution of the borehole 

fluid during the five years of this experiment. This model is presented in the following sections. 

 

3. A simplified reactive transport model 

3.1 Overview of the proposed reactive transport model  

As stated above, the aim of this modelling exercise was to develop a “minimal” model capable of 

reproducing the chemical evolution of the PC experiment, i.e. the chemical evolution of 

compounds that are coupled with each other through the simultaneous occurrence of biological 
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transformation of solute or solid compounds, in-diffusion and out-diffusion of solute species and 

precipitation/dissolution of minerals (in the borehole and in the formation).  

This section aims at giving an overview of the concepts and parameters used in the model. Each 

of these parameters, including their calibration, are then discussed in the following section 4.  

Mainly because biological activities are highly non linear, processes occurring in the 

experimental borehole could not be modelled using a purely mechanistic approach without fitting 

parameters. Thus, it is not within the scope of this paper to try to present a biological mechanistic 

model.  

Different events during the course of the experiment (e.g. water sampling, leakage and 

others) caused changing boundary conditions. As discussed elsewhere in this series of papers, the 

major changes in the water chemistry during the PC experiment included decreasing 

concentrations of bromide, deuterium and sulphate and increases in the organic carbon and total 

dissolved carbonate contents.  The changes in the bromide and deuterium contents were expected 

because the test water was spiked with both of them to act as tracers. The measured 

concentrations of these tracers in the borehole are shown in Part A, Figure 7. They differ 

considerably from those expected in that the concentrations in samples taken late in the 

experiment, instead of continuing to decreasing asymptotically to the low concentrations in the 

formation water, began to increase toward those of the initial test water. This behaviour could be 

linked to the experimental needs, where the chemical composition of the water in the borehole 

was changed through dilution of the borehole water with volumes of synthetic water (high 

concentration of bromide, but also zero concentration of sulphides, etc.) introduced into the 

system to compensate the losses due to sampling or leakages. As a second consequence, these 

events led also to changes in the concentration gradients between the borehole and the 

surrounding formation, hence having an effect on the solute diffusion in/from the formation. It 
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was then necessary to take these events into account in the reactive transport calculation to 

achieve good mass balance. This was achieved by building a model with several restarts after 

having changed the conditions in the borehole through mixing of the borehole water with 

synthetic porewater.  

Changing boundary conditions as a function of time had to be considered also for 

bacterial activity. Biological analyses (Stroes-Gascoyne et al., This Issue) showed that different 

bacterial strains with different sources of energy (e.g. sulphate reduction vs. methanogenesis) 

were active in the borehole. Four different periods of bacterial activity can be discerned in Figure 

3. Phase 1 is characterized by almost no release of organic matter into the system. As a 

consequence, a low bacterial activity is expected. A significant release of organic matter different 

from acetate is observed in phase 2, while in phase 3 there is a release of organic matter and a 

concomitant transformation into acetate. In phase 4, the organic matter concentration in the 

borehole decreases due to degradation into inorganic carbon and diffusion into the surrounding 

formation, providing that the organic matter release in the borehole stopped or decreased 

drastically. Figure 4 also shows that phase 4 must itself be subdivided into two periods for the 

description of a bloom of methanogenesis before it slows down. This event has been recorded in 

biological analysis through the presence of active methanogenic bacteria at the end of the 

experiment. 

Figure 3 clearly shows that acetate was not the primary source of organic carbon in the 

system because acetate concentration is well below total or dissolved organic carbon 

concentration before phase 3. Acetate must therefore be considered as a secondary product of the 

bacterial activity. This secondary product can itself be degraded into inorganic carbon, as will be 

shown later. The nature of the primary source organic matter that was released into the borehole 

and then transformed into acetate was the subject of much controversy over the course of the 
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experiment: among the possible candidates, acetone (CH3-CO-CH3), which was used for cleaning 

the filters before the experiment, was long preferred until modern carbon measurements on 

dissolved organic carbon revealed that the carbon source was a modern one (De Cannière et al., 

This issue). After thoroughly scrutinizing the potential sources of modern carbon in the system, 

De Cannière et al. came to the conclusion that glycerol (C3H8O3), originating from the gel pH-

electrode, was the most probable candidate as the primary source of organic carbon in the system.  

The two samples during phase 3 exhibited acetate concentration of the same level as total 

organic matter. Moreover, these concentrations increased during phase 3. This observation can 

only be explained by considering that the primary source of organic carbon, once released into 

the borehole water, is immediately converted into acetate. From a modelling conceptual point of 

view, this behaviour is equivalent to the presence of a “solid” source of carbon that is not 

released into solution but is directly degraded into acetate. If we consider that glycerol from the 

electrode is indeed the primary source of carbon, this could be explained by the presence of an 

intense bacterial activity in the vicinity of the electrode degrading glycerol into acetate. On the 

contrary, during phase 2, total organic carbon concentration is much higher than acetate 

concentration, evidencing a release from the electrode that is faster than the consumption by 

surrounding bacteria, possibly because the initial population of active bacteria was very small. As 

a consequence, organic matter releases in the system were modelled by three distinct kinetic rates 

accounting for these three situations: (i) a rate for glycerol (or another organic compound) release 

into solution, (ii) a rate for its degradation into acetate and (iii) a rate for direct release of acetate 

into solution accounting for the rapid conversion of glycerol (or another organic compound) into 

acetate at the source term.  

These rates were arbitrarily changed as a function of time in order to accurately reproduce 

the data shown in Figure 3. This approach must be seen as a purely fitting approach that is 
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justified because the interest of the modelling was to understand the response of the system to the 

bacterial activity. 

  

3.2. Numerical modelling methods 

 3.2.1 Geometry and transport 

In the modelling approach that follows, the experimental borehole was considered to be a perfect 

cylinder. Diffusion taking place at the bottom and the top ends of the cylinder was neglected in 

comparison to radial diffusion owing to the low value of their surface area as compared to radial 

surfaces. Anisotropy of diffusion due to the bedding of the rock (Arcos et al., 2004; Van Loon et 

al., 2004a; Van Loon et al., 2004b) was not taken explicitly into account. With this 

approximation, the system turned into a 1D radial model. This type of geometry can be 

implemented in PHREEQC using the “-stagnant_cells” option. (Parkhurst and Appelo, 1999; 

Appelo, 2007; Appelo and Wersin, 2007). Transport by diffusion is solved at each time step by 

mixing iteratively adjacent cells (n and n+1) following the relationship: 

 

bc
nnn

nn
pnn f

Vh
A

tDmixf ×
×

×Δ××=
+

+
+

1,

1,
1, ε  Equation 1

 

where pD×ε  is the harmonic mean of the effective diffusion coefficient, i.e.: 292 

293  

1,1,

1,1,2
++

++

×+×

×××
=×

npnnpn

npnnpn
p DD

DD
D

εε
εε

ε  Equation 2

 

where Δt is the time step (s), An,n+1  is the shared surface area among cells n and n+1 (m2), hn,n+1  

is the distance between midpoints of the cells n and n+1 (m), Vn is the water volume in cell n for 

294 

295 
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which the concentration change is calculated (m3), and fbc is a correction factor that equals 2 for 

constant concentration (end cell of the system) and 1 otherwise (inner cell of the system with 

closed boundary). εn (-) is the porosity of cell n. Dp,n is the pore diffusion coefficient of cell n (m2 

s-1). If no surface diffusion (in the electrostatic double layer at charged mineral surfaces) is 

considered, the pore diffusion coefficient is related to the effective diffusion coefficient (De) by 

the relationship: 
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The borehole was modelled using only one numerical cell representative of the ring 

volume containing the test water (the inner part of the borehole was filled with instrumental 

devices). Surface to volume ratios between adjacent cells were calculated according to the 

diameter of the borehole (0.052 m) and the size of each numerical cell. The Opalinus Clay 

formation was represented by 33 cells extending 1.5 m into the clay formation. Grid size was 

refined when approaching the borehole/formation interface: cell sizes ranged from 0.002 m at the 

interface up to 0.2 m in the clay formation. Considering the total length of the borehole (4.63 m), 

this corresponds to a porous rock volume of 0.0016 m3 for the cell at the interface and 8.3 m3 for 

the last cell in the clay formation. Transport parameters were fitted according to the Br and 

deuterium diffusion profiles using the multicomponent diffusion option of PHREEQC (different 

Dp values can be attributed to different solutes in the system). All dilution events (sampling and 

leakages reported in Wersin et al., This issue-a) were taken into account.  

 

 3.2.2 Chemistry Database 
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The BRGM Thermoddem database (http://thermoddem.brgm.fr/index.asp?langue=GB) was used 

for chemical species and minerals solubility given the need for reliable thermodynamic data of 

clay minerals. Preliminary simulation runs made it possible to simplify calculations by removing 

unnecessary solute species. The database used for the simulation is given in Electronic Annex 1. 

 

3.3.  Boundary conditions 

 3.3.1  Anion concentration and accessible porosity 

Because of the out-diffusion of chloride at the Lias and Dogger boundaries, porewaters of 

the Opalinus Clay at Mont Terri show a distinct diffusion profile through the formation (See 

Figure 2 in Wersin et al., This issue-a). The stability of the Cl + Br concentration profile due to 

diffusion of Br from the borehole in the formation and Cl from the formation in the borehole 

confirmed that porewater chloride concentration was about 0.3 mol/L (Figure 5). Sulphate 

concentration was adjusted to match the Cl/sulphate seawater ratio in agreement with porewater 

modelling results (Pearson et al., This issue). 

Total water loss at 105°C (7.42 – 8.4 kgwater kgrock
-1) together with rock bulk density 

determination (2.38-2.4 kg dm-3) enabled Koroleva et al. (This issue) to determine a mean total 

porosity of 0.19. This value is also in agreement with reported grain density of 2.7 kg dm-3 

(Pearson et al., 2003, Table A9.12). This porosity value is high when compared to previously 

reported values measured with the same method (Pearson et al., 2003, Table A9.12). However, it 

is still in agreement with porosity values obtained from HTO diffusion experiments: for instance 

Van Loon et al. (2003) reported values up to 0.2. According to (i) this porosity value, (ii) the total 

chloride content that can be leached from the sample and (iii) the Cl concentration in the 

porewater (as given by the final concentration of the test water), Koroleva et al. (This issue) also 

calculated that anion accessible porosity represents ~75% of total porosity. This value is higher 
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than the usually reported mean value of ~50-60%, but still in reasonable agreement with the 

range of variation reported in the literature (40-70%, Van Loon et al., 2003; Van Loon et al., 

2004a; Van Loon et al., 2007). As a consequence, it was decided to consider this measured value 

in the modelling exercise. In the following, an anion accessible porosity of 0.14 corresponding to 

0.06 kgw/kgr will be used and the remaining 0.02 kgw/kgr must be considered as “surface water” 

(Appelo and Wersin, 2007; Appelo et al., 2008).  

 

 3.3.2. Major cations (Na, K, Ca, Mg, Sr) and cation exchange 

A cation exchange reaction can be represented by the following reaction equation, in the case of a 

Na+/Mez+ binary system (Me = K, Ca, Mg or Sr): 

 

z NaX + Mez+ ⇔ MeXz + z Na+ Reaction 4

 

where X- represents a negatively charged surface site. The selectivity coefficient of this reaction 

is KGT
Na/Me: 

{ }
{ } z

Na

Me
z

z
CaNa

GT E
E

Me
NaK ×= +

+
/  Equation 4

 355 

356 

357 

358 

}

Where E values are charge fractions on the exchanger. 

The over-coring analysis showed that cation exchanger composition is very constant as a function 

of borehole distance (Koroleva et al., This issue).  In these conditions, Equation 4 implies that the 

ratio of solute activity { }
{ +

+

z

z

Me
Na  is also constant. This can be verified in Figure 6. 359 

 Page 16 of 54 27 january 2010 



The exchange selectivity coefficient of Na/Me exchange reactions can then be calculated 

from exchanger population analysis and borehole sample data (

360 
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Table 1). These values can be 

compared to those predicted by the illite and smectite exchanger models given by Tournassat et 

al. (Tournassat et al., 2007; Tournassat et al., 2009). The present exchange selectivity coefficients 

can be explained by a combination of illite and smectite surfaces: modelled Na/K selectivity 

coefficients are lower than the measured selectivity coefficient for illite/smectite mixed layer 

minerals (I/S). This observation is in agreement with the recommendation of Tournassat et al. 

(2009) to increase the Na/K coefficient by 0.2 – 0.4 log10 unit for I/S surfaces. Exchange 

selectivity coefficients are also in agreement with those calculated at another location with the 

same chlorinity (BWS-A1), while they are slightly different for a location with lower chlorinity 

(BWS-A3) (Pearson et al., This issue). 

In the following, the log10KGT value calculated from borehole and core samples (first 

column of Table 1) will be used to run the simulations. 

 

 3.3.3. Porewater chemistry 

Initial porewater chemistry was calculated at 25°C with the model presented in Pearson et al. 

(This issue) and with the parameters given above. The minerals considered at equilibrium with 

the formation porewater were: quartz, calcite, siderite, chlorite (Chlorite-CCa-2), illite 

(Illite_IMt2) and pyrite. Chosen chlorite and illite data were originally obtained from calorimetric 

measurements (Gailhanou et al., 2007; Gailhanou et al., 2009). Porewater modelling results are 

given in Table 2Erreur ! Source du renvoi introuvable.. 

 

 3.3.4  HDO and Br- diffusion 
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Diffusion parallel to the bedding of Opalinus Clay from Mont Terri has already been 

studied at the laboratory scale (Van Loon et al., 2004a) as well as in in-situ experiments (Van 

Loon et al., 2004b). Van Loon et al., 2004b report a diffusion coefficient (Dp) of 1.1 10-10 and 2.7 

10-10 m2 s-1 for I- and HTO respectively. Together with the measured accessible porosity 

(Koroleva et al., This issue), these values were used in our calculations and then slightly adjusted 

to better match the data. A good fit was obtained with Dp of 0.9 10-10 and 2.4 10-10 m2 s-1 for Br- 

and HDO respectively (
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401 
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403 

404 
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406 

Figure 7).  

Koroleva et al. (This issue) report spatial profiles of Br and Cl concentrations in the 

immediate vicinity (first 17 centimetres) of the borehole. Even though the data, in particular the 

data for Cl-, are associated with a relatively large degree of uncertainty, there appears to be a 

discrepancy between the computed (with diffusivities estimated from time-series of tracer 

concentrations in the borehole fluid) and measured spatial profiles (Figure 7, lower right panel). 

It is not easy to decide whether this shift is significant or not. If significant, this shift would 

suggest the presence of a disturbed zone surrounding the borehole having enhanced diffusion 

properties (Cartalade et al., 2007). Considering the overall good agreement of the model and the 

measured data and their associated uncertainty, the possibility of a disturbed zone is not further 

discussed.  

In the following models, a porosity corresponding to the volume of 75% of the total water 

content (i.e. volumetric porosity = 0.14) was assumed for the entire rock formation. In the 

proposed reactive transport model, this porosity applies not only to anions but also to positively 

charged and neutral species for simplicity and calculation time saving reasons. By the way, 

considering the total porosity instead of the reduced porosity for HDO transport has little effect 

on the calculated HDO concentrations as a function of time in the borehole (Figure 7). It is 

possible to consider different Dp for different solute species using the multi-component diffusion 
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option of PHREEQC (Appelo and Wersin, 2007). Differences in Dp originate from differences in 

the diffusion coefficient in pure water (D0) and tortuosity (τ) for different solute species. For each 

species i, the relationship Dp = τ D0 applies. In the present studies, D0 values from the Phreeqd.dat 

database were considered together with a tortuosity factor calculated from experimental Dp for Br 

and HTO: we set the tortuosity (τ) for anions and neutral species as τanions=Dp(Br)/D0(Br) and 

τneutral =Dp(HDO)/D0(HDO). D0 for OH- and H+ were set to the value of HDO for calculation time 

saving reasons. As a further simplification of the system, we considered that the same tortuosities 

τanions applied to all of the anions, independently of their charge and τneutral to both neutral species 

and cations. Cations are expected to have lower tortuosities than neutral species (Appelo and 

Wersin, 2007) but this effect was neglected.  

407 

408 

409 

410 

411 

412 

413 

414 

415 

416 

417 

418 

419 

420 

421 

422 

423 

424 

425 

426 

427 

428 

 

3.4.  Borehole conditions 

 3.4.1  Biological activity kinetic parameters   

Once the solute species diffusion properties were fixed, six kinetic parameters for material 

degradation and bacterial activity could be fitted: three of them account for the release of the 

primary organic matter and its transformation into acetate (see section 2); two others are for 

sulphate reduction/acetate oxidation and the last one is for methanogenesis. Each of these 

parameters was constrained by measured data: 

• The release rate of primary organic carbon source in solution can be computed through 

the difference between TOC (total organic carbon) and acetate concentrations. 

• The degradation rate of this organic carbon together with the degradation rate of a “solid” 

carbon source into acetate was fitted with the acetate concentrations as a function of time. 
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• The sulphate reduction rate (through acetate oxidation) was constrained by sulphate 

concentration as a function of time.  

• The rate of methane production from acetate degradation was given by the methane 

concentration profile as a function of time. 

 

As stated in the introduction, it was not within the scope of this work to describe the 

system with all of the intermediate degradation products and no attempt has been made to find 

them in the literature. Measurable initial and final products solely were considered, as well as 

zero-order kinetic reactions. Bacteria are considered here only as catalysts for thermodynamically 

possible reactions.  

Glycerol (described as C3H8O3) transformation into acetate was described with: 

 

2/7 C3H8O3   + 1/7 HCO3
- ⇒ ½ CH3COO- + 5/14 H+ + 2/7 H2O 

 

Reaction 5

Even though it is now clear that the source of carbon in the system was glycerol that leached 

from the electrode (De Cannière et al., This issue), the question regarding the nature of this 

source was also addressed through this reactive transport model exercise by considering two 

other potential sources of carbon. One of these potential sources was acetone that could have 

entered into the system after the filter cleaning procedure (De Cannière et al., This issue): 

 

¼ CH3-CO-CH3  + ¼ HCO3
- ⇒ ½ CH3COO- + ¼ H+ 

 

Reaction 6
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The other potential source was natural organic matter present in the formation, taken here 

as a generic CH2O formula:  

 

CH2O  ⇒ ½ CH3COO- + ½ H+ 

 

Reaction 7

The sensitivity of the modelling result to the considered source of carbon could then be tested. 

Acetate degradation during sulphate reduction was described with 

 

CH3COO- + SO4
2-  ⇒ 2 HCO3

- + HS-  

 

Reaction 8

and methanogenesis with: 

 

CH3COO-  + H2O ⇒ HCO3
- + CH4 

 

Reaction 9

 

Table 1 in Electronic Annex 2 gives the fitted parameters for all of these reactions. Reaction 5 to 

Reaction 9 were normalized to ½ acetate (corresponding to 1 organic carbon atom). Changes in 

kinetic rates were defined at each experimental event. 

Figure 8 shows the good agreement (because fitted) between modelled concentrations in 

the borehole as a function of time for organic compounds, sulphate and methane.  

 

 3.4.2  Mineral precipitation/dissolution   
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Due to the intense bacterial activity, a large amount of sulphide has been produced that has 

precipitated as FeS compounds and pyrite (Koroleva et al., This issue). According to speciation 

calculations using experimental data (pH, Fe(II) and sulphide concentration when available), 

pyrite was oversaturated. As a consequence, pyrite could not be considered at equilibrium in the 

simulation. According to the fast kinetic of precipitation for FeS in the experimental conditions 

(Rickard, 1995) with regards to the simulation time-step, we decided to consider equilibrium for 

a FeS compound: 

 

FeS + H+ ⇒ Fe2+  + HS- 

 

Reaction 

10 

The solubility KFeS of the compound was fixed at the mackinawite solubility tabulated in the 

database (log10 KFeS = -3.54). Pyrite precipitation was considered as a kinetic process linked to 

the abundance of FeS (Rickard and Luther III, 2007). The rate of pyrite precipitation had little 

influence on the outcome of the simulation with regards to simulated Fe and sulphide 

concentrations in the borehole. The only effect is on the FeS/pyrite ratio of precipitated minerals. 

Unfortunately no quantitative data is available for this parameter. 

Calcite was found to precipitate in the borehole as well (Koroleva et al., This issue), in 

agreement with its saturation index calculated from alkalinity, pH and Ca concentration (Figure 

9). Calcite was oversaturated during the whole of the experiment due to (i) kinetic limitation for 

its precipitation and/or (ii) measurement uncertainties and/or (iii) uncertainties in the database 

with regards to the solute complex of Ca. We took these effects into account by considering that 

calcite precipitated in the borehole at thermodynamic equilibrium but with a saturation index of 

0.2 instead of 0. 
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 3.4.3  pH buffer effect of clay mineral surfaces   

The pH buffer effect of clay minerals was taken into account by considering the clay 2-pK non 

electrostatic model of Bradbury and Baeyens (Bradbury and Baeyens, 1997). The amounts of 

sites were recalculated from the measured amount of illite + illite/smectite in the rock (~38%, 

Koroleva et al., This issue). We considered that illite and smectite sites have nearly the same 

buffer properties (Bradbury and Baeyens, 2009a; Bradbury and Baeyens, 2009b). In addition, we 

considered that H+ could undergo cation exchange reaction with the same affinity for the surface 

as Na+ (Laudelout et al., 1968; Ferrage et al., 2005). The effect of compaction on site 

accessibility in the intact rock material was not taken into account.  

 

4.  Results and discussion 

 4.1  Influence of the nature of the organic matter on modelling results 

Once organic matter production and degradation rates have been determined, the effect of these 

reactions can be assessed on key parameters such as pH and alkalinity. However, these 

parameters are potentially highly buffered by the surrounding formation. In a first attempt, we 

considered the pH buffer of the clay surfaces as described above together with the equilibrium of 

the formation with its calcite and siderite constituents. No other mineral in the formation was 

introduced into the model. Figure 10 shows that the consideration of CH2O, glycerol or acetone 

as the primary source of carbon has a significant effect on the result. Modelled alkalinity 

increases in the order acetone < glycerol < CH2O. Conversely, pH decreases in the order acetone 

> glycerol > CH2O. These relationships can be easily appreciated through the consideration of 

combinations of reactions 11 to 14 that all concern organic matter degradation via sulphate 

reduction: 
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4/7 C3H8O3 + SO4
2- ⇒  CH3COO- + 5/7 H+ + 4/7 H2O + 12/7 HCO3

- + HS- Reaction 

11

 

2 CH2O  + SO4
2- ⇒ 2 HCO3

- +  H+ + HS- 

 

Reaction 

12

 

½ CH3-CO-CH3 + SO4
2- ⇒  3/2 HCO3

- + ½ H+ + HS-   

 

Reaction 

13

For each sulphate mole that is transformed into sulphide in these reactions, glycerol produces 1.7 

moles of bicarbonate, CH2O, 2 moles and acetone, 1.5 moles. The evolution is similar for pH: the 

acetone case, with 0.5 H+ produced per mole of sulphate, exhibits logically the highest pH while 

the CH2O case led to the most acidic result with 1 H+ per sulphate molecule. Glycerol produces 

0.7 H+ per sulphate and leads to an intermediate result between CH2O and acetone.  

Whereas, in all cases, pH predicted by the simulation is in general agreement with 

measured pH, TIC and alkalinity are best reproduced with the glycerol model (Figure 10). This 

result is in agreement with the results of De Cannière et al. (This issue), who demonstrate that 

glycerol is the best candidate for organic source in the system.  

 

 4.2  Influence of the pH buffer from the formation 

The test-case without clay surface pH buffering in the formation revealed that this buffer has an 

important effect on the outcome of the simulation: without this buffering effect, total inorganic 

carbon concentration increases too much while the pH is too low (Figure 11). The results remain 
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however in good agreement with the measurements. Increasing the buffering capacity by a factor 

of three has little effect on the results (
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Figure 11): as a consequence, the present experiment 

cannot be used to finely determine this buffering capacity although it confirms its existence. With 

regard to our boundary conditions, the pH of the porewater is a parameter whose uncertainty 

must be addressed: measured and modelled pH values up to 7.5 have been reported (Pearson et 

al., This issue). An additional simulation was run with an initial pH of 7.4 in the porewater of the 

formation. The alkalinity value was adjusted accordingly to achieve equilibrium with calcite 

without changing the calcium concentration. This change has a marked effect on the modelling 

result (Figure 11) with too low inorganic carbon concentration and too high pH: as a 

consequence, at the location of the experiment, the pH of the porewater is rather at a value of 7 

than 7.5. The outcome of this sensitivity analysis is summarized in Table 3.  

 

 4.3 Iron and sulphide controls 

Iron and sulphide concentrations are not well reproduced by the model as a function of time 

(Figure 12). It should be noted that the maximum concentration of sulphide at day 600 in the 

system is in agreement with the solubility of mackinawite representative here of an “amorphous” 

FeS compound (note that, at that time, the predicted iron concentration is not too much in error). 

It was however neither possible to reproduce the decrease in sulphides after day 600, nor the 

strong increase in iron concentration at day 1061. The iron and sulphide systems are highly 

oscillatory and it is thus difficult to describe them with an equilibrium approach. In particular, the 

peak of sulphide concentration is fully correlated with the peak in acetate concentration, although 

the precipitated FeS in the borehole should have buffered its concentration as shown by the 

model. Potential degassing (departure of H2S) and introduction of atmospheric O2 during the 
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leakage events were not taken into account in the simulations and could have played a role in the 

control of the sulphide concentration.  

With regards to iron, the presence of organic chelates in solution, originating from 

bacterial activity, could be an explanation for its too high measured concentration as compared to 

the model.  

 

 4.4 Concentrations of major cations  

Major cations (Na, Ca, Mg, K, Sr) are adequately described by the model (Figure 13). This result 

was fully expected since the porewater composition was calculated in agreement with their 

concentrations that remained almost constant in the borehole during the experiment. It may be 

noted that the modelled calcium concentration decreases with time in the borehole and with an 

evolution parallel to the measured concentration. A slight increase in the Ca concentration in the 

porewater (corresponding to a small decrease in the exchange selectivity coefficient for Ca) 

together with an increase in the saturation index of calcite would make it possible to reproduce 

almost perfectly the data (not shown). 

 

 4.5 Comparisons with over-coring data  

Mineralogical and chemical data obtained from over-coring sampling did not show 

significant changes in the composition of the clayrock material directly surrounding the 

experiment in spite of the dramatic changes of concentration of some elements in the borehole 

(e.g. sulphate, sulphur, pH and total inorganic carbon). Conversely, the analysis of mineralogical 

phases having precipitated inside the borehole revealed the high reactivity of the system. This 

type of contrasting information between clay-rock and borehole is direct proof of the high 
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buffering capacity of the rock with regard to chemical perturbations and it can be further 

ascertained from the analysis of reactive transport modelling outcomes. 

The precipitation of “amorphous” sulphide mineral in the borehole together with a 

kinetically controlled precipitation of pyrite was an input condition for the modelling. The 

important information obtained from the modelling work is that (i) sulphide minerals can 

effectively precipitate (from the thermodynamic and kinetic points of view) and (ii) that more 

than 99.9% of amorphous sulphide mineral precipitated at the interface. Figure 14 illustrates the 

presence of a zone enriched in precipitates at the borehole/clay formation interface (the y-axis is 

in log scale). Detachment of minerals from this zone due to water circulation causing erosion of 

the borehole wall could explain the massive presence of sulphide minerals at the bottom of the 

borehole and in the circulation tubes at the end of the experiment. This simulation result also 

explains why it was not possible to detect precipitation of such phases inside the clayrock 

formation. 

While calcite precipitation has been observed in the borehole, it was not possible to detect 

any newly precipitated calcite in the first centimetres of the formation. The simulations are also 

in agreement with this observation, since only the borehole shows significant change in its calcite 

content (8.85 mmol L-1 were precipitated in the borehole according to simulation results). The 

maximum relative increase in calcite content is at the interface and accounts only for 0.3% of the 

initial amount of calcite. Accordingly, the change of pH in the formation is rapidly buffered as 

shown in Figure 15. 

 

5. Conclusions 

Reactive transport modelling simulation of the porewater chemistry experiment at Mont Terri 

proved to be efficient in reproducing a complex set of chemical analyses as a function of time. 
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The good agreement between the model and the measurements performed in the borehole water 

and also in samples from over-coring enables the following conclusions to be drawn:  

(i) The Opalinus Clay rock formation has a high buffering capacity with regard to chemical 

perturbation due to bacterial activity: sulphur production as well as pH decrease or alkalinity 

increase was buffered within a few centimetres around the borehole. This buffering capacity is 

attributed to the carbonate system as well as to the clay surfaces reactivity. 

(ii) The chemical controls of pH and major cations and anions in Opalinus Clay porewater 

chemistry are now well constrained (Pearson et al., This issue), enabling realistic simulations of a 

perturbed system thanks to an accurate description of the initial unperturbed system. 

(iii) Reactive transport models proved to be useful in discriminating between hypotheses with 

regard to different reactive pathways (e.g. different sources of organic carbon for bacteria in this 

experiment). 

Of course, it is not possible to prove that the proposed model is the unique solution to the 

system with regards to the numerous parameters that are (or could be) included. The present work 

only shows that it is possible to reproduce all main outcomes of a chemical perturbation in a clay 

host-rock with a model that takes into account the state of the art on chemical controls in these 

rocks. Potential applications of this model are discussed in the next synthesis paper (Wersin et al., 

This issue-b). 
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Table 1. Calculated and predicted selectivity coefficient for Na/Me exchange on Opalinus Clay. 

Exchange 

reaction 

Calculated 

log10KGT from 

borehole and 

core sample 

analysis 

Predicted 

log10KGT for 

illite surfaces 

(from a) 

Predicted 

log10KGT for 

smectite 

surfaces 

(from b) 

Calculated 

log10KGT for 

BWS-A1 

samples 

water (from 

c) 

Calculated 

log10KGT for 

BWS-A3 

samples 

water (from 

c) 

Na→K 1.40 ± 0.05 0.96 0.96 1.32 1.26 

Na→Ca 0.78 ± 0.06 0.41 0.99 0.83 0.63 

Na→Mg 0.62 ± 0.05 0.71 0.75 0.61 0.48 

Na→Sr 1.14 ± 0.22 - 1.17 0.97 0.51 

765 

766 

767 

a. Tournassat et al., 2007 

b. Tournassat et al., 2009, including effects of cation-chloride ion pairs 

c. Pearson et al., this volume 
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Table 2. Modelled initial porewater composition. 

 Modelled initial porewater 
composition 

Analysed test water 
composition (mean of 

initial and final) 
pH 7.01 7.74 
pe -2.74  
   

Elements Concentration (mmol/kgw)  
Cl 300 262 

Br 1 0.6 29.0 
S(6) 15.0 14.8 
TIC 3.16 1.3 
Na 257 256 
K 1.96 1.45 
Ca 16.7 15.8 
Mg 19.9 18.0 
Sr 0.43 0.33 
Fe 0.14  
Si 0.18  
Al 21.4 10-6  

Acetic acid 2 0.2  
Methane 3 0.035  

1 From Pearson et al., 2003 770 

771 

772 

2 From Courdouan et al., 2007 

3 Taken at the value of the first plateau of methane concentration from day 116 to day 529 
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Table 3. Outcome of sensitivity analysis on organic matter source and clay pH buffer effect. 

 

 Organic matter Clay pH buffer Comment 
Simulation 1 CH2O Yes High alkalinity, low pH 
Simulation 2 Acetone Yes Low alkalinity, high pH 
Simulation 3 = 
reference 
simulation 

Glycerol Yes  

Simulation 4 Glycerol No High alkalinity, low pH 
Simulation 5 Glycerol Yes × 3 Almost no effect 
Simulation 6 Glycerol Yes and initial 

pH = 7.4  
Low alkalinity, high pH 
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Figure captions 

Figure 1. Profiles of mineral volume changes over a period of 1426 days, without (A) and with 

ion exchange and biodegradation (B) from Alt-Epping et al. (2006). The vertical line represents 

the borehole/rock interface. The precipitation of carbonate phases, calcite, dolomite and siderite 

along with ion exchange with clay surfaces act as buffer for the fluid composition. Increasing 

chemical complexity leads to a larger volume fraction of carbonate minerals. Sulphate reduction 

through biodegradation causes pyrite to precipitate. 

Figure 2. Spatial profiles of selected species concentrations at different times during the 

simulation from Alt-Epping et al. (2006). The left and right panels are model scenarios without 

and with ion exchange and biodegradation, respectively. The interface between borehole and 

surrounding rock is marked by a vertical line. The profiles show that a greater complexity of 

system processes entails a non-monotonous evolution of species concentration in the borehole. 

Figure 3. Measurement of organic compounds as a function of time (TOC = total organic carbon, 

DOC = dissolved organic carbon). 

Figure 4. Measurements of methane concentrations as a function of time. a: bloom of 

methanogenic activity. b: decrease in methanogenic activity. 

Figure 5. Cl (open circles) and Br (closed circles) concentrations as a function of time. 

Figure 6. { }
{ +

+

z

z

Me
Na  solute activity ratio as a function of time in the PC experiments (Me = K, Ca, 

Mg and Sr). 
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Figure 7. Comparison between measurements (circles and red dashed line) and Br and HDO 

modelled diffusion profiles. Plain and dashed curves are representative of calculations using 

porosities of 75 or 100% of the measured total water content. Squares are representative of the 

sample taken at day twelve while refilling the borehole. The pore diffusion coefficient (Dp) 

remained unchanged at 0.9 and 2.4 10-11 m2 s-1 for anions and HDO respectively. Upper left 

figure: Br concentration in the borehole as a function of time. Upper right figure: focus on the 

initial stage of the experiment. Bottom left figure: HDO concentrations in the borehole as a 

function of time. Bottom right figure: Br concentration ratio profile in the rock at the end of the 

experiment. The distance is expressed in the bedding plane geometry (see Koroleva et al., this 

volume). 

Figure 8. Comparison of experimental results and model using glycerol as the organic carbon 

source. Top left figure: organic matter. Plain line = acetate; dashed line = TOC (= acetate + solute 

organic source). Top right figure: sulphate concentration. Bottom left figure: methane 

concentration. Bottom right figure: evolution of kinetic rates as a function of time. 

Figure 9. Saturation index of calcite as a function of time. 

Figure 10. Left: total inorganic carbon (squares) and alkalinity (circles) as a function of time. 

Right: pH (solid black line) as a function of time. Lines are indicative of modelled total inorganic 

carbon and pH according to the following scenario (organic carbon release in solution / solid 

source of carbon): 1- CH2O/CH2O; 2- Acetone / Acetone; 3- Glycerol / glycerol. 

Figure 11. Left: total inorganic carbon (squares) and alkalinity (circles) as a function of time. 

Right: pH (solid black line) as a function of time. Lines are indicative of modelled total inorganic 

carbon and pH according to the following scenario (organic carbon release in solution / solid 
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source of carbon): 4- Glycerol / Glycerol without pH buffer of clay surfaces; 5- buffering 

capacity × 3; 6- porewater pH at 7.4 instead of 7. 

Figure 12. Left: sulphide concentration as a function of time. Right: iron concentration as a 

function of time (note that the concentration is in log scale). Lines are indicative of modelled 

concentrations (Scenario 3 with glycerol). 

Figure 13. Concentrations of major cations as a function of time. Circles: measurements. Lines: 

model (Scenario 3 with glycerol). 

Figure 14. Modelled pyrite (red) and amorphous sulphide (blue) solid concentration profile (in 

mmol L-1 porewater) after 1846 days of perturbation (Glycerol simulation case). 

Figure 15. pH profile after 1846 days of perturbation (Glycerol simulation case). 
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Figure 1. Profiles of mineral volume changes over a period of 1426 days, without (A) and with 

ion exchange and biodegradation (B) from Alt-Epping et al. (2006). The vertical line represents 

the borehole/rock interface. The precipitation of carbonate phases, calcite, dolomite and siderite 

along with ion exchange with clay surfaces act as buffer for the fluid composition. Increasing 

chemical complexity leads to a larger volume fraction of carbonate minerals. Sulphate reduction 

through biodegradation causes pyrite to precipitate. 
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Figure 2. Spatial profiles of selected species concentrations at different times during the 

simulation from Alt-Epping et al. (2006). The left and right panels are model scenarios without 

and with ion exchange and biodegradation, respectively. The interface between borehole and 

surrounding rock is marked by a vertical line. The profiles show that a greater complexity of 

system processes entails a non-monotonous evolution of species concentration in the borehole. 
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Figure 3. Measurement of organic compounds as a function of time in the borehole (TOC = total 

organic carbon, DOC = dissolved organic carbon). 
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Figure 4. Measurements of methane concentrations as a function of time. a: bloom of 

methanogenic activity. b: decrease in methanogenic activity. 

 

 

 

 

 

 Page 43 of 54 27 january 2010 



0 500 1000 1500 2000
0

50

100

150

200

250

300

350

Time (days)

C
l a

nd
 B

r c
on

ce
nt

ra
tio

ns
 (m

m
ol

 L
-1

)

Br

Cl

 863 

864 

865 

866 

867 

868 

869 

870 

871 

Figure 5. Cl (open circles) and Br (closed circles) concentrations as a function of time. 
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Figure 7. Comparison between measurements (circles) and Br and HDO modelled diffusion 

profiles (obtained from calibration). Black plain and red dashed curves are representative of 

calculations using porosities of 75 or 100% of the measured total water content. Squares are 

representative of the sample taken at day twelve while refilling the borehole. The pore diffusion 

coefficient (Dp) remained unchanged at 0.9 and 2.4 10-10 m2 s-1 for anions and HDO respectively. 

A: Br concentration in the borehole as a function of time. B: focus on the initial stage of the 

experiment. C: HDO concentrations in the borehole as a function of time. D: Br concentration 

ratio profile in the rock at the end of the experiment. The distance is expressed in the bedding 

plane geometry (Koroleva et al., This issue).  

 Page 46 of 54 27 january 2010 



891 

892 

 

 

0 500 1000 1500 2000
0

2

4

6

8

10

12

14

16

Time (days)

C
on

ce
nt

ra
tio

n 
(m

m
ol

 C
 L

-1
) TOC

DOC
Organic acids
AcetateTO

C

Ac
et

at
e

0 500 1000 1500 2000
0

2

4

6

8

10

12

14

16

Time (days)

S
ul

ph
at

e 
co

nc
en

tra
tio

n 
(m

m
ol

 L
-1

)

0 500 1000 1500 2000
0

200

400

600

800

Time (days)

M
et

ha
ne

 (µ
m

ol
 L

-1
)

0 500 1000 1500 2000
0

1x10-9

2x10-9

3x10-9

Time (days)

K
in

et
ic

 ra
te

s
(m

ol
 L

-1
 s

-1
 in

 th
e 

bo
re

ho
le

) Release of organic C in solution
Degradation of solute organic C into acetate
Degradation of "solid" organic C into acetate
Sulphate reduction
Methanogenesis

A B

C D

 893 

894 

895 

896 

897 

898 

Figure 8. Comparison of experimental results and model using glycerol as the organic carbon 

source. A: organic matter. Plain line = acetate; dashed line = TOC (= acetate + solute organic 

source). B: sulphate concentration. C: methane concentration. D: evolution of kinetic rates as a 

function of time.  
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   Figure 9. Saturation index of calcite as a function of time. 
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Figure 10. Left: total inorganic carbon (squares) and alkalinity (circles) as a function of time. 

Right: pH (solid black line) as a function of time. Lines are indicative of modelled total inorganic 

carbon and pH according to the following scenario (organic carbon release in solution / solid 

source of carbon): 1- CH2O/CH2O; 2- Acetone / Acetone; 3- Glycerol / glycerol. 
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Figure 11. Left: total inorganic carbon (squares) and alkalinity (circles) as a function of time. 

Right: pH (solid black line) as a function of time. Lines are indicative of modelled total inorganic 

carbon and pH according to the following scenario (organic carbon release in solution / solid 

source of carbon): 4- Glycerol / Glycerol without pH buffer of clay surfaces; 5- buffering 

capacity × 3; 6- porewater pH at 7.4 instead of 7. 
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Figure 12. Left: sulphide concentration as a function of time. Right: iron concentration as a 

function of time (note that the concentration is in log scale). Lines are indicative of modelled 

concentrations (Scenario 3 with glycerol). 
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Figure 13. Concentrations of major cations as a function of time. Circles: measurements. Lines: 

model (Scenario 3 with glycerol).  
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Figure 14. Modelled pyrite (red) and amorphous sulphide (blue) solid concentration profile (in 

mmol L-1 porewater) after 1846 days of perturbation (Glycerol simulation case).  
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Figure 15. pH profile after 1846 days of perturbation (Glycerol simulation case).  
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