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Abstract 9 

Large-scale landslide prediction is typically based on numerical modelling, with computer 10 

codes generally involving a large number of input parameters. Addressing the influence of 11 

each of them on the final result and providing a ranking procedure may be useful for risk 12 

management purposes. This can be performed by a variance-based global sensitivity analysis. 13 

Nevertheless, such an analysis requires a large number of computer code simulations, which 14 

appears impracticable for computationally-demanding simulations, with computation times 15 

ranging from several hours to several days. To overcome this difficulty, we propose a “meta–16 

model”-based strategy consisting in replacing the complex simulator by a “statistical 17 

approximation” provided by a Gaussian-Process (GP) model. This allows computation of 18 

sensitivity measures from a limited number of simulations. For illustrative purposes, the 19 

proposed methodology is used to rank in terms of importance the properties of the 20 
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elastoplastic model describing the complex behaviour of the slip surface in the La Frasse 21 

landslide (Switzerland).  22 

One limitation of the GP-based methodology is that the computation of sensitivity measures is 23 

associated with uncertainty as the simulator is approximated using a training sample of small 24 

size, i.e. a limited knowledge on the “true” simulator. This source of uncertainty can be taken 25 

into account by treating the GP model from a Bayesian perspective. This provides the full 26 

posterior probability distribution associated with the sensitivity measures, which can be 27 

summarized by a confidence interval to outline the regions where the GP model is “unsure”. 28 

We show that this methodology is able to provide useful guidelines for the practical decision-29 

making process and suggest further site investigations. 30 

 31 

Keywords: Landslide model; computationally demanding code; global sensitivity analysis; 32 

Sobol’ indices; meta-model; Gaussian Process. 33 

1 Introduction 34 

Landslides are very complex phenomena controlled by a range of processes. Geological 35 

history, lithology and structure, slope relief and shape, weather and climate, seismicity and 36 

human activity can be identified as the main causative factors (Crosta and Clague, 2009). The 37 

associated risk to communities can be high (e.g. Evans et al., 2002) and thus, predicting 38 

landslide behaviour is a major concern.  39 

Due to the recent advances in computer modelling (e.g. in processor performance) and in 40 

particular in the finite element method (e.g. van den Ham et al., 2009), numerical models are 41 

commonly used in practice to get a better understanding of the landslide behaviour and to 42 

predict its evolution. The main drawback of such models is the high number of input factors 43 

required for analysis. Global sensitivity analysis of complex numerical models can then be 44 



used to determine: (1) which input factors contribute the most to the output variability (within 45 

the “factors’ prioritisation setting” as described by Saltelli et al., 2008); (2) which input 46 

factors interact with each other; and (3) which input factors are insignificant and can be 47 

eliminated to “simplify” the model (within a “factors’ fixing setting”, Saltelli et al., 2008). 48 

Such an analysis is useful in identifying which input factors require further investigations to 49 

reduce uncertainties in the computer code results, hence providing guidelines for risk 50 

management (Saltelli, 2002b).  51 

Among the existing sensitivity methods, variance-based methods have proved to be effective 52 

(Saltelli et al., 2000). In this article, we focus on the method of Sobol’ indices (Sobol’, 1993; 53 

Archer et al., 1997; Sobol’ and Kucherenko, 2005). Unlike traditional linear or rank 54 

regression-based methods, these indices allow representing the sensitivity of a general model 55 

without assuming any kind of linearity or monotonicity in the model (Saltelli and Sobol’, 56 

1995). In practice, the computation of Sobol’ indices uses a Monte Carlo sampling strategy. 57 

An example of application in the field of landslide modelling with applications of moderate 58 

complexity is provided by Hamm et al. (2006). Such an approach, however, appears hardly 59 

applicable for more computationally demanding models, as it requires a large number of 60 

computer code evaluations. For instance, the study of Hamm et al., (2006) required ten 61 

thousand model realisations, corresponding to about 20 hours of computation time (on a 2 62 

GHz Pentium 4 PC). The same sensitivity analysis would require 208 days using a model that 63 

takes 30 minutes and 2500 days using a model that takes 6 hours to compute. 64 

To overcome this difficulty, a first solution is to use a distributed parallel computing 65 

methodology, thus requiring an appropriate grid computing architecture and the optimization 66 

of computing resources (e.g. Dupros et al., 2006; Boulahya et al., 2007). 67 

In this paper, an alternative is proposed using a limited number of computer code runs (also 68 

named “simulator”, O’ Hagan, 2006), which consists in replacing (i.e. approximating) the 69 



simulator by a surrogate model with low computation time, also named a “meta-model”, to 70 

compute the Sobol’ indices (i.e. the sensitivity measures). Various “meta-models” exist (e.g. 71 

linear regression, nearest neighbour method, Multivariate Adaptative Regression Spline, 72 

neural network and Gaussian Process); see, for example, Storlie et al., 2009 for a recent 73 

review.  74 

The meta-model uses a limited number of simulator runs, i.e. input-output pairs 75 

(corresponding to the training sample), to infer the values of the complex simulator output 76 

given a yet-unseen input configuration. Such an approximation introduces a source of 77 

uncertainty referred to as “code uncertainty” associated with the meta-model (O’ Hagan, 78 

2006), so that the sensitivity measures computed with the meta-model are “uncertain”. 79 

In the present article, we choose to solve the described problem of approximation (and of 80 

inference) under the Bayesian formalism treating the simulator as an “unknown” function in 81 

the sense that the simulator output for any yet-unseen input configuration is unknown until the 82 

simulator is actually run for the considered configuration (Oakley and O’ Hagan, 2004). We 83 

choose to use the concept of an emulator corresponding to a statistical approximation so that a 84 

prior probability distribution is assigned to the simulator outputs and updated according to the 85 

usual Bayesian paradigm given the training sample. This approach returns not only the most 86 

likely value for the output given any input configuration, but also an entire probability 87 

distribution (O’ Hagan, 2006). This distribution can be used to estimate a level of confidence 88 

when the predictive quality of the meta-model is not high due to a small training data (see, for 89 

instance, Marrel et al., 2008 and 2009, Storlie et al., 2009). A Gaussian Process (GP) is 90 

chosen as the prior model for the simulator. It has been widely used when designing computer 91 

experiments (Sacks et al., 1989; Kennedy and O’Hagan, 2001; Santner et al., 2003). 92 

In the first section, the Sobol’ decomposition method is described in the general framework of 93 

the variance-based global sensitivity approach (Saltelli et al., 2008).  94 



Then, the GP model used as a meta-model of the computationally intensive simulator is 95 

described in the framework of the stochastic processes for computer code experiments under 96 

the Bayesian regression formalism. The methodology for computing the Sobol’ indices using 97 

the GP model is described and illustrated in two applications. The first application is a simple 98 

analytical model based on “infinite slope analysis” (Hansen, 1984). This allows us to compare 99 

the sensitivity measures computed using the “true” model with those computed using the GP 100 

model. Finally, the application of this methodology to a La Frasse (Switzerland) landslide 101 

model (Laloui et al., 2004) is presented and we show how to use the sensitivity measures to 102 

guide the decision-making process for further site investigations.  103 

2 Global sensitivity analysis by the Sobol’ decomposition method 104 

2.1 Introduction on the variance-based sensitivity analysis 105 

Consider the simulator g and the scalar output y determined from a vector of n input factors 106 

{ } niix ,,1K==x  so that )(xgy = . 107 

Considering the n-dimensional vector as a random vector of independent random variable Xi, 108 

then the output Y is also a random variable (as a function of a random vector). A variance-109 

based sensitivity analysis aims at determining the part of the total unconditional variance VY 110 

of the output Y resulting from each input random variable Xi. The total variance VY can be 111 

expressed as follows (Saltelli et al., 2000 & 2008): 112 
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where the partial variance iV  and nijV K  read: 116 
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 119 

with ][ ii xXYE = , the expectation of Y given that the ith input factor Xi has a fixed value xi 120 

and ][ ,,, nnjjii xXxXxXYE === K  the conditional expectation of Y given that the ith input 121 

factor Xi has a fixed value xi, the jth input factor Xj has a fixed value xj, …etc. 122 

The variance of the conditional expectation Vi represents the first order effect of the input 123 

factor Xi taken alone, whereas the higher order indices account for possible mixed influence 124 

of various input factors. 125 

 126 

2.2 The Sobol’ decomposition method 127 

2.2.1 Presentation 128 

To determine the partial variances of Y, Sobol’ (1993) proposes the following decomposition 129 

of g into summands of increasing dimension provided that g is integrable: 130 
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 133 

where g0 corresponds to the mean constant value of the function g and each term can be 134 

evaluated through multidimensional integrals as follows: 135 
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 140 

with id −x  denotes the integration over all input factors except xi and )(ijd −x , the integration 141 

over all input factors except both xi and xj. Similar formulae can be obtained for higher order 142 

terms. 143 

 144 

The total variance YV  can then be expressed as:  145 

 146 
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while the partial variances read as follows: 149 
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with nii s ≤<<≤ K11  and ns ,,1K= . 152 

2.2.2 Definition of the Sobol’ indices 153 

The Sobol’ indices 
siiS ....1
describe which amount of the total variance is due to the 154 

uncertainties of input factors in the set { }sii ,,1 K  and is expressed as the ratio between 
SiiV ...1

 155 

and YV , respectively the partial and total variances . 156 

The first-order sensitivity index Si for input factor Xi is expressed as follows: 157 

 158 
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The sensitivity measure iS  is referred to as “the main effect of Xi” and can be interpreted as 160 

the expected reduction in the total variance of the output Y (i.e. representing the uncertainty in 161 

Y) if the true value of the input factor Xi was known. This index provides a measure of 162 

importance useful to rank the input factors (Saltelli et al., 2000 & 2008).  163 

The main effect and the higher order Sobol’ indices satisfy the following property: 164 

 165 
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 167 

Defining iS−  as the sum of all the terms 
siiS ....1
but the ith index, the total effect index TiS  of Xi 168 

is defined as the total contribution of the ith input factor to the total variance. It reads as 169 

follows (using eq. 10): 170 

 171 

iTi SS −−=1           (11) 172 

 173 

0=TiS  means that the input factor Xi has no effect. Thus, it can be fixed at any value over its 174 

uncertainty range (Saltelli et al., 2008). 175 

As the total number of sensitivity indices reaches 2n-1 (Saltelli et al., 2000), hence 176 

representing a high computational cost, the sensitivity analysis is generally limited, in practice, 177 

to the pair of indicators corresponding to the main effect iS  and to the total effect TiS  of Xi 178 

(Saltelli et al., 2008). 179 

2.2.3 Numerical implementation 180 

The evaluation of the Sobol’ indices can be carried out through a Monte Carlo sampling 181 

strategy (Saltelli et al., 2000), which remains an approximation of the true value of the 182 



sensitivity indices. Thus, the quality of the approximation directly depends on the sample size. 183 

Let us consider m sampled elements { } mj
j

,...,1
)(

=x  in the n-dimensional space of input factors: 184 
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 187 

where ],...,,,...,[ )1()1(1 njjijijij xxxx +−− =x  and the subscripts Sa and Sb in eq. (12) indicate that two 188 

sampling data matrices are being used. 189 

The main and total effects can be estimated using the sampling strategy proposed by Saltelli 190 

(2002a) at a computation time cost of m×(n+2) model evaluations. Additional computational 191 

efficiency can be achieved by making best use of sampling designs, for instance Sobol’ quasi-192 

random sequences, and estimators, for instance Jansen’s estimator (Saltelli et al., 2010). 193 

However, the computational effort for simulators with computation time ranging from several 194 

hours to several days may still be high and the present work focuses on a strategy based on 195 

Gaussian Process meta-modelling to reduce this effort. 196 

3 Gaussian Process (GP) modelling 197 

3.1 Description of the stochastic process framework 198 

First, the deterministic response y(x) of the simulator is treated as a realization of a random 199 

variable Y(x), which can be decomposed into a deterministic function f, which represents the 200 

mean (i.e. expectation of Y), and a stochastic function Z as proposed by Sacks et al. (1989) 201 

and reads as follows: 202 



 203 
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 205 

Note that the case of multiple outputs is beyond the scope of the present article and the 206 

interested reader is advised to refer to Le and Zidek (2006).  207 

Without prior information between the modelling inputs and outputs, f is chosen as a 208 

multivariate linear regression model (Martin and Simpson, 2005) so that: 209 

 210 
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 212 

where { } niib ,,0 K==B  is the regression parameter vector; ( ) [ ])(,),(),( 10 xxxxF nfff K=  is the 213 

corresponding regression vector with fi (i=0,1,…,n),  the basis functions. Assuming linearity 214 

for the mean f, we have: f0(x)=1 and fi(x)=xi for i=1,…,n. 215 

The stochastic part Z can be seen as a confidence measure on the model output mean. It 216 

represents a zero mean random process, characterized by its n×n covariance matrix ΣS so that 217 

an element at the jth row and kth column of ΣS is expressed as: 218 

 219 
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 221 

where x(j) is the jth input vector (with j=1…NS) and Var[Z]=σ2. The correlation function ρ 222 

provides the interpolation and spatial correlation properties.  223 

Treating the simulator g within the stochastic process framework allows the deterministic part 224 

f to account for the global behaviour of g, whereas the correlation terms allow the meta-model 225 

to “locally” interpolate the known data by introducing a strong correlation in the 226 



neighbourhood of these points. Complex input-output behaviours are hence better represented 227 

(e.g. see Langewisch and Apostolakis, 2010). 228 

3.2 Description of the Gaussian correlation model 229 

Various authors (e.g. Stein, 1999; Le and Zidek, 2006) have discussed different types of 230 

correlations functions. For our purposes, the study is restricted to the Gaussian correlation 231 

model so that the value of the correlation matrix only depends on the normalised distance 232 

between the input vectors )( jx  and )(kx . Assuming the correlation model is invariant to any 233 

translation in the input space (e.g. Rasmussen and Williams, 2006), the Gaussian correlation 234 

function reads as follows: 235 
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 238 

where θ={θi}i=1,…,n are the correlation lengths, also referred to as “hyper-parameters” (e.g. see 239 

Rasmussen and Williams, 2006). θi parameter quantifies the rate at which the output varies as 240 

ith input factor is changed. 241 

Note that in case of data measurements errors or non deterministic computer code, a constant 242 

regularization term referred to as “nugget effect” may be defined, hence introducing a white 243 

noise. 244 

3.3 Principle and prediction under the Bayesian formalism 245 

In this paper, we focus on the stationary GP model which fits the stochastic framework and 246 

has been broadly used in designing computer experiments (Sacks et al., 1989; Kennedy and 247 

O’Hagan, 2001; Santner et al., 2003). 248 



Let us define the training sample as the NS training data pairs { }SS YX , , which represent a 249 

mapping between the spaces of input factors { }
SNj

j
S ...1

)(
== xX  , with { } ni

j
i

j x ,,1
)()(

K==x , and the 250 

outputs { }
SNj

j
S y ...1

)(
==Y , obtained through the NS selected simulator runs so that 251 

{ }
SNj

jj fy ,,1
)()( )( K== x .  252 

In a first step, constructing the GP model implies considering the simulator output Y as a 253 

random variable, which is assumed to follow a multivariate Gaussian distribution (denoted G) 254 

for any random vector of input factors X. This assumption represents our prior belief on the 255 

simulator. Using the training sample { }SS YX , , the Bayes theorem is used to refine the 256 

mentioned prior information in order to yield the posterior distribution of the output, known 257 

as the “emulator” (e.g. O’ Hagan, 2006). This latter not only provides an expected value for 258 

any “yet-unseen” input configuration, but it also gives an entire posterior distribution given 259 

the observed data. 260 

Formally, the probability ( )SSp XY  of obtaining SY given SX , is expressed under the GP 261 

assumption, as follows: 262 

( ) ( )( )SSSS FGp ΣBXXY ,.~         (17) 263 

Considering a new vector )1( +SNx  of input factors and the associated output )( )1()1( ++ = SS NN YY x , 264 

the joint probability distribution of the random variables ( ))1(, +SN
S YY  reads as follows:  265 
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where ][ )(),...,(),( )()2()1( SN
S FFF xxxF =  corresponds to the regression matrix. 267 

( ))1( +SNk x  represents the vector of correlation functions between each of the NS training input 268 

vectors )( jx  and the new element )1( +SNx . It can be written as: 269 

 270 
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 272 

Within the Bayesian framework, the posterior distribution of the computed output random 273 

variable )1( +SNY  is conditioned on the “observed” (i.e. actually calculated) values 274 

corresponding to the training sample { }SS YX , , given the new element )1( +SNx , and follows a 275 

multivariate Gaussian distribution (Von Mises, 1964): 276 
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where: 279 
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 283 

with 1−
SΣ , the inverse of the covariance matrix associated to the training input data SX . 284 

The conditional mean of eq. (18b) is used as a predictor and the conditional variance in eq. 285 

(18c) corresponds to the mean square error of the predictor term. Provided that the new 286 

candidate )1( +SNx  is far away from the training input data SX , the term 287 

( ) ( ))1(1)1( +−+ ⋅⋅ SS N
S

TN kk xΣx  will be small so that the predicted variance will be large. 288 

In a more general manner, if we consider two new test candidates u and v, the general 289 

expression of the conditional GP model can be written as: 290 

 291 
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 293 

The conditional mean is used as a predictor and is expressed as in eq. (18b).  294 

The conditional covariance provides the confidence on the prediction and reads as follows: 295 

 296 
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 298 

The regions of the input space, where few data are available will be underlined by higher 299 

variance. 300 

The main difficulty in constructing a conditional GP model given a training sample resides in 301 

determining the parameters corresponding to the regression coefficient vector B, the hyper-302 

parameters θ and the variance σ². A first approach consists in estimating them as solutions of 303 

the optimization problem using the maximum likelihood method, e.g. implemented in the 304 

GEM-SA software (O’Hagan, 2006) and the MATLAB toolbox DACE (Lophaven, 2002). 305 

However, the optimisation algorithms used for the parameters identification may show 306 

limitations, especially in case of high dimension problem (e.g. see Marrel et al., 2008). 307 

Besides, such an approach may underestimate the variance in the predictions of new 308 

observations (Cressie, 1993). 309 

In this paper, an approach based on the Bayesian framework (e.g. Rasmussen 1996) is chosen 310 

so that the hyper-parameters are given prior distributions p(θ). In the Bayesian framework, the 311 

Markov Chain Monte Carlo methods (Gilks et al., 1996) are used to integrate over the 312 

posterior distribution p(θ|XS ,YS) associated with the GP parameters i.e. the training sample is 313 

used to update the GP parameters. The posterior distribution of the hyper-parameters will be 314 

hence concentrated on values that are consistent with actually observed data. This procedure 315 

is implemented in the package named “TGP” of the “R” software (“R” Development Core 316 



Team, 2009) by Gramacy and co-workers (Gramacy, 2007; Gramacy and Taddy, 2010). 317 

Further theoretical details can be found in Gelman et al. (1995) and Gramacy and Herbert 318 

(2009). Though computationally more intensive (Storlie et al., 2009), this approach presents 319 

the attractive feature to incorporate the uncertainty related to the construction of the GP model, 320 

so that the level of confidence associated with the “meta-model”-computed sensitivity 321 

measures also takes this source of uncertainty into account (see step 4 of section 3.4.). 322 

3.4 A “GP-based” methodology for sensitivity analysis 323 

In this section, we describe the methodology to compute the sensitivity measures (i.e. the 324 

Sobol’ indices) using a GP model as a surrogate model of the computationally intensive 325 

simulator. 326 

3.4.1 Step 1: representation of the input factor uncertainty 327 

The first step is to characterize and mathematically represent the uncertainty (range and form 328 

of the probability distribution) on each of the input factors. This representation can have a 329 

strong influence on the final sensitivity results, hence on risk management decision making 330 

(Saltelli, 2002b). 331 

Representing the uncertainty through empirical probability distributions requires a large 332 

amount of data (laboratory or in situ measurements), which may not be practical in many 333 

situations. Thus, knowledge on the range of uncertainty is commonly evaluated either based 334 

on physical reasoning, on analogies with similar cases or simply from expert opinions, 335 

whereas the mathematical representation of the probability distribution may either be 336 

theoretically known or assumed. In a situation where “sparse, vague and incomplete” data are 337 

available, a common approach consists in assigning a uniform probability distribution based 338 

on the “maximum entropy” approach (Gzyl, 1995). 339 



3.4.2 Step 2: setting training data 340 

The objective then is to run the simulator for a limited number of times NS in order to create a 341 

mapping between the input factor and the computer code output domain. The number NS 342 

should be defined as a compromise between the minimization of the computation time cost 343 

and the maximization of the input factor domain exploration (directly linked with the 344 

accuracy and reliability of the GP model, see step 3). 345 

In this view, we propose to use the Latin hypercube sampling method (McKay et al., 1979) in 346 

combination with the “maxi-min” space-filling design criterion (Koehler and Owen, 1996).  347 

More sophisticated strategies exist mainly based on sequentially adaptive design of 348 

experiments adding new training candidates where the predictive uncertainty is high (e.g. 349 

Gramacy and Herbert, 2009). The use of such approaches is beyond the scope of this paper. 350 

3.4.3 Step 3: constructing the GP model 351 

Using the GP model instead of the simulator introduces an additional source of uncertainty 352 

referred to as “code uncertainty” (O’ Hagan, 2006). In the regions where the true simulator is 353 

not evaluated, we are uncertain about what the “true” simulator would introduce. This sort of 354 

uncertainty can be reduced by increasing our knowledge of the true simulator, i.e. by 355 

increasing the training sample size.  356 

Except when a “nugget” effect is included, the GP model is an exact interpolator, so that 357 

residuals of the training data cannot be directly used to validate the approximation (Marrel et 358 

al., 2008). The key aspect for validating the “statistical” approximation is to estimate the 359 

expected level of fit (i.e. predictive quality) of the GP model to a data set that is independent 360 

of the data (i.e. “yet-unseen” data) that were used to train the GP model.  361 

As additional simulator runs are costly, using a test sample of new data might be impractical 362 

and cross-validation procedures such as the “k-fold” cross-validation technique (Hastie, 2002) 363 

should be used. In this cross-validation procedure, the initial training sample is randomly 364 



partitioned into k subsets. In a first step, a single subset is used as the validation data for 365 

testing the GP model, and the remaining k-1 subsets are used as training data for the 366 

construction of the GP model. For each step, the k validation data are estimated and the 367 

coefficient of determination R² for the procedure is computed as follows: 368 
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where y  represents the vector of observations in the validation set; y is the mean of the 370 

corresponding sample and ŷ , the vector of predicted values using the GP model. 371 

The coefficient R² provides a metric of the predictive quality so that a value close to 100 % 372 

indicates that the GP model is successful in matching the validation data. A typical threshold 373 

of 80 % is commonly used to qualify the predictive quality as “satisfactory” (e.g. Marrel et 374 

al., 2008). 375 

The cross-validation process is then repeated k times using each of the k subsets as validation 376 

samples. For small training sets, the cross validation procedure with k=1 is usually used 377 

corresponding to the so-called “leave-one-out” cross validation procedure. 378 

3.4.4 Step 4: estimating the sensitivity measures 379 

The most likely value ( )iSμ  for the sensitivity measures is computed using the conditional 380 

mean of the GP model in eq. 18b. Additional useful information for risk management 381 

purposes is the level of confidence (or accuracy) related to the sensitivity analysis based on 382 

the GP model. A confidence interval ( )iSCI  can be defined with bounds corresponding to the 383 

5% and to the 95 % quantile of the full posterior distribution of the sensitivity measures. This 384 

confidence interval both summarizes the “code uncertainty” associated with the meta-model 385 

(O’ Hagan, 2006) and the uncertainty on the estimation of the GP model parameters (see 386 

section 3.3). 387 



4 Illustrative analytical model 388 

In this section, we consider the infinite slope analytical model (e.g. Hansen, 1984) in order to 389 

illustrate the methodology described in section 3.4. This model is of course not a 390 

computationally demanding function, but we imagine it as representing a calculation that may 391 

take several minutes or even hours of computation to evaluate. Besides, using this analytical 392 

model also allows us to compare the results of the sensitivity analysis using the “true” model 393 

with those using the GP model. 394 

4.1 Description of the analytical model 395 

The  stability of the infinite slope model as depicted in Fig. 1 is evaluated by deriving the 396 

factor of safety FS, which corresponds to the ratio between the resisting and the driving forces 397 

acting on the slope (eq. 22):  398 

 399 
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[Fig. 1 about here] 402 

 403 

where C is the cohesion of the soil material; φ, the friction angle; θ, the slope angle; γ , the 404 

soil unit weight; γw, the water unit weight; z, the thickness of slope material above the slip 405 

plane; and m, the ratio between thickness of surficial saturated slope material and z. If FS is 406 

lower than 1.0 the potential for failure is high. 407 



4.2 Sensitivity analysis of the analytical model 408 

For illustrative purposes, we only considered the thickness z and the slope angle θ as 409 

uncertain input factors. The other input factors were assumed fixed: C=10 kPa, φ=25°,  410 

γ=22 kN.m-3, γw= 9.81 kN.m-3 and m=90 %. 411 

The objective was to identify whether z or θ contributes the most to the FS variability within a 412 

“factors’ prioritisation setting”. It is assumed that very sparse data are available to 413 

characterize the uncertainty on these input factors so that z uniformly varies between 5 and 25 414 

m and θ  uniformly varies between 25° and 35° (step 1). We generated two different training 415 

samples of respectively 6 and 20 training data of the form {z ; θ ; FS}, using the Latin 416 

hypercube sampling approach (step 2) and for each training sample, a GP model was 417 

constructed. 418 

 419 
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 421 

Fig. 2 (top) shows the comparison between the values of FS obtained from direct simulations 422 

on a grid of 10×10 in the input factor domain [5 ; 25]×[25 ; 35] (straight line) and from the 423 

prediction on the same grid using the GP model (dashed line) for both training samples (Fig. 424 

2, left for 6 training data and right for 20 training data). The coefficient of determination or 425 

goodness of fit (eq. 22) estimated for both GP models was equal to 90.9 % for the first 426 

training sample and to 98.8 % for the second one, hence showing a very good match for both 427 

meta-models. The quality of the approximation was then estimated through a “leave-one-out” 428 

cross validation procedure (step 3): we obtained a coefficient of determination of 96.2 % for 429 

the first sample and 99.7 % for the second one, hence indicating a “high” predictive quality. 430 

The estimated FS using both GP models (Fig. 2, middle) were compared to the “true” 431 

observed FS. The closer the dots to the straight black line, the better the approximation. 432 



The results for the computation of the main effects required (step 4) 433 

m×(n+2)=2500×(2+2)=10000 model evaluations using the sampling strategy of Saltelli 434 

(2002a). The most likely of the main effects calculated with both GP models (blue dots in Fig. 435 

2, bottom) were compared to the main effects obtained from direct simulations (red dots on 436 

Fig. 2, bottom) by means of the R package “sensitivity” and the function referred to as 437 

Sobol2002 (available at http://cran.r-project.org/web/packages/sensitivity/index.html). These 438 

results are summarized in Table 1. 439 

 440 
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 442 

We see that differences are larger for the GP model constructed with the lower training 443 

sample size but, however, the “true” values for the main effects still lie within the confidence 444 

interval bounded by the 5 % and the 95 % quantile (black cross-type marker in Fig. 2, 445 

bottom). Not surprisingly, increasing the number of training samples (i.e. our knowledge of 446 

the true function) decreases the range of code uncertainty as well as the differences between 447 

the true values and estimates (Table 1). 448 

5 Computationally intensive numerical model 449 

In this section, we present the application of the proposed GP-based sensitivity analysis 450 

methodology (section 3.4.) to the landslide finite-element model originally used for the 451 

simulation of the La Frasse (Switzerland) landslide during the 1994 crisis period (Laloui et al., 452 

2004).  453 

5.1 General description of the landslide model  454 

The La Frasse landslide covers a total area of roughly 1000×1000 m², and represents an 455 

average thickness of 80 m in its upper part and 40 m in its lower part. The total volume of the 456 



La Frasse landslide reaches 73 million m3.  Since 1975, a constant movement has been 457 

observed in its upper and central parts, varying between 10.10-2 and 15.10-2 m per year 458 

(Noverraz and Bonnard, 1988; Bonnard et al., 1995). The evolution of the groundwater table 459 

is considered to be at the origin of the sliding and the instabilities were mainly observed 460 

during the 1994 crisis (over a period of nearly 300 days). Therefore, in order to assess the 461 

effect of the hydraulic regime on the geomechanical behaviour of the landslide, finite-element 462 

simulations considering a 2D cross-section through the centre of the landslide were performed 463 

by Laloui et al. (2004) using the finite element program GEFDYN (Aubry et al., 1986).  464 

The model is composed of 1694 nodes, 1530 quadrangular elements, and six soil layers 465 

derived from the geotechnical investigations. Fig. 3 gives an overview of the model, as well 466 

as the boundary conditions used for analysis. Instabilities observed in 1994 were triggered by 467 

pore pressure changes occurring at the base of the slide (see Laloui et al., 2004 for further 468 

details). 469 

 470 
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 472 

The general behaviour of the landslide is strongly correlated to the properties of the slip 473 

surface. The complex behaviour of the slip surface material was modelled using the Hujeux 474 

elastoplastic multi-mechanism constitutive model (Aubry et al., 1982; Hujeux, 1985; Lopez-475 

Caballero et al., 2007; Lopez-Caballero and Modaressi Farahmand-Razavi, 2008) and the 476 

Mohr-Coulomb criterion was assumed for the other soil materials.  477 

The Hujeux constitutive model permits coverage of a large range of deformation and takes 478 

into account: (1) the influence of confinement and stress path on the moduli; (2) the effects of 479 

over-consolidation; and (3) the influence of the void ratio. It can be used for granular as well 480 

as clayey soil behaviours and it is based on a Coulomb type failure criterion and the critical 481 



state concept. The volumetric and deviatoric hardening regimes implemented in the Hujeux 482 

model lead to a dependence on the consolidation pressure as in the Cam-Clay family models, 483 

and to the evolution of the plastic yield surface with the deviatoric and volumetric plastic 484 

strains. Moreover, the model accounts for dilatancy/contractance of soils and non-associated 485 

flowing behaviour with evolution of the plastic strain rate through a Roscoe-type dilatancy 486 

rule. 487 

As outlined by Laloui et al. (2004), the main parameters for the slip surface materials are: (1) 488 

the bulk (K) and shear (G) elastic modules, which are assumed to depend on the mean 489 

effective stress through a power-type law of exponent ne; (2) the critical state and plasticity 490 

parameters, essentially the friction angle φ at perfect plasticity, the plastic compressibility β; 491 

and (3) the dilatancy angle Ψ, appearing in the flow rule and defining the limit between soil 492 

dilatancy and contractance.  493 

Note that these parameters can be directly measured from either in situ or laboratory test 494 

results (Lopez-Caballero et al., 2007; Lopez-Caballero and Modaressi Farahmand-Razavi, 495 

2008). The other Hujeux law parameters, appearing in the flow rule, the hardening and the 496 

threshold domains definition are categorized as “not-directly measurable” (Lopez-Caballero 497 

and Modaressi Farahmand-Razavi, 2008) and are estimated through numerical calibration 498 

techniques between the observed/experimental data and the simulated ones. 499 

5.2 Sensitivity analysis using the GP-based methodology 500 

The sensitivity analysis using the GP-based methodology (see section 3.4.) was carried out to 501 

assess the importance of the input factors of the Hujeux constitutive model describing the slip 502 

surface behaviour within a “factors’ prioritisation setting”, so that the main effects (first order 503 

Sobol’ indices) were used for ranking.  504 

The quantity of interest was chosen as the horizontal displacement calculated at two 505 

observation points, namely in the upper (observation point 1, Fig. 3), and lower parts of the 506 



landslide (observation point 2, Fig. 3). The sensitivity analysis was carried out in a dynamic 507 

manner at each step of the 300 days long crisis period (decomposed into a hundred time steps). 508 

It was focused on the main measurable parameters of the Hujeux constitutive model (total 509 

number of seven input factors), the others being kept constant i.e. treated with “no 510 

uncertainty”. The properties of the other soil layers were assumed to be constant as well. 511 

5.2.1 Step 1: representation of the input factor uncertainty 512 

In this illustrative study, our objective was to explore the situation where the same “level of 513 

uncertainty” is associated with the parameters of Hujeux model: a 25 % variation around the 514 

original values identified by Laloui and co-authors (Laloui et al., 2004) was affected to each 515 

of the seven input factors (Table 2). Considering no further information on the uncertainty, a 516 

uniform probability distribution was assigned to each of these input factors (see section 3.4.1.). 517 

 518 
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 520 

5.2.2 Step 2: setting training data 521 

A total number of 30 input parameter configurations was generated. The resulting horizontal 522 

displacements computed over the crisis period are shown on Figure 4 for the observation 523 

points 1 and 2. For a given input configuration, a simulator run required ≈96 hours on a 524 

computer unit (CPU) with a 2.6 GHz dual core processor and 1 GB of RAM. The training 525 

sample was generated using a grid computing architecture or computer cluster composed of 526 

30 CPU, so that all simulations were performed in parallel. 527 

 528 
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 530 



5.2.3 Step 3: constructing the GP model 531 

At each step of the 1994 crisis period, a GP model was constructed using the 30 training data 532 

to approximate the horizontal displacements at the observation points 1 and 2.  533 

A “leave-one-out cross-validation” procedure was carried out for each step in order to assess 534 

the predictive quality of the GP models. Fig. 5 depicts the temporal evolution of the 535 

coefficient of determination R² for the cross-validation procedure.  536 

During the first half of the crisis period (first 150 days), R² decreases over time for both 537 

observation points between 99.9 % and ≈95 %, hence indicating that the predictive quality is 538 

“high” over this period. During the second half of the crisis period, the quality is still 539 

satisfactory if we consider observation point 2 (R² varying between ≈80 % and ≈95 %, see 540 

Marrel et al., 2008), whereas it can be qualified as “low to moderate” for observation point 1 541 

(R² steeply decreasing from ≈95 % to ≈62 %), hence indicating possibly high uncertainty on 542 

the GP model. 543 

 544 
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 546 

5.2.4 Step 4: estimating the sensitivity measures 547 

The main effects were calculated using the sampling strategy of Saltelli (2002a), hence 548 

requiring m×(n+2)=1000×(7+2)=9000 GP model evaluations. Preliminary convergence tests 549 

were carried out for m=250, 500, 1000 and 2000: they showed that m=1000 yields satisfactory 550 

convergence of the sensitivity measures to two decimal places (+/- 0.025).  551 

The total computation time of the GP-based sensitivity analysis reached a total of 108 hours 552 

(4.5 days), including the generation of the training sample (≈4 days), the construction of a GP 553 



model at each step of the crisis period (≈3 hours) and the cross-validation procedure (≈3 554 

hours). 555 

If the same analysis had been undertaken by direct simulations, the total computation time 556 

would have reached 9000/30×96=28800 hours (1200 days) using the same 30 CPU cluster. To 557 

achieve a computation time of 108 hours, a computer cluster composed of 8000 CPU would 558 

have been required. 559 

5.2.5 Analysis of the temporal evolution of the main effects 560 

Fig. 6 (top) depicts the temporal evolution of the “first most important” input factor (straight 561 

green line) at the observation point 1 in the upper part of the landslide (Fig. 6, left) and at the 562 

observation point 2 in the lower part of the landslide (Fig. 6, right). Similarly, Fig. 6 (bottom) 563 

provides the temporal evolution of the “second most important” input factor. The input factors 564 

(Table 2) were ranked in terms of importance based on the mean of the main effect (blue 565 

straight line, Fig. 6) computed with the GP models constructed at each instant of the crisis 566 

period.  567 

 568 
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 570 

This preliminary ranking of the input factors, only based on the mean of the main effect, was 571 

assessed again in a second step taking into account the range of uncertainty associated to the 572 

sensitivity measures i.e. using the 5% and to the 95 % quantile of the posterior probability 573 

distribution associated to the main effects (black dashed line, Fig. 6). The procedure consisted 574 

in qualifying the GP model as “unsure” with respect to the sensitivity measures in regions 575 

where the confidence intervals of the first and second most important input factors intersect.  576 

Considering the observation point 1, Fig. 6 (left) shows that for the first 150 days, coefficient 577 

ne can be identified as the “first most important” input factor with a mean of the main effect 578 



constant at ≈20 %, whereas the dilatancy angle Ψ can be identified as the “second most 579 

important” input factor with a mean of the main effect constant at ≈10 %. For the second 580 

crisis period, the confidence intervals intersect and the ranking is “unsure”. Fig. 7 (left) gives 581 

the mean of the main effects and the associated confidence intervals at three different steps of 582 

the crisis period, namely 30 days (Fig. 7, top), 150 days (Fig. 7, middle) and 210 days (Fig. 7, 583 

bottom). At 30 days, ne can clearly be identified as the first most important input factor, but 584 

the ranking of the other input factors is hardly feasible considering the intersecting confidence 585 

intervals. Over time (at 150 and 210 days), the confidence intervals for all input factors 586 

intersect so that the ranking is “unsure”. This result is in agreement with the low coefficient of 587 

determination of the cross-validation procedure over the second half of the crisis period (Fig. 588 

5, black dashed line). As a conclusion, the knowledge on the “true” simulator should be 589 

increased for the second crisis time period in order to increase the predictive quality of the GP 590 

model, hence to narrow the width of the confidence interval. 591 

 592 
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 594 

Considering the observation point 2, Fig. 6 (right) shows that before ≈50 days, the confidence 595 

intervals intersect and the ranking is “unsure”. Over the time period after ≈50 days, 596 

coefficient ne can be identified as the “first most important” input factor with a mean of the 597 

main effect increasing from ≈20 % to ≈45 %, whereas the plastic compressibility β can be 598 

identified as the “second most important” input factor with a mean of the main effect 599 

approximately constant and equal to 15 %. As for point 1,  Fig. 7 (right) gives the mean of the 600 

main effects and the associated confidence intervals for steps 30 days (Fig. 7, top), 150 days 601 

(Fig. 7, middle) and 210 days (Fig. 7, bottom). It shows that over time, ne and β can be 602 

identified “with certainty” as the “first and the second most important input factors” for steps  603 



150 and 210 days, but the ranking of the other input factors is hardly feasible considering the 604 

intersecting confidence intervals. 605 

Despite the limited number of simulator runs (30) i.e. the limited knowledge on the “true” 606 

simulator, several conclusions can still be drawn to guide future investigations. The sensitivity 607 

analysis based on the GP modelling emphasizes coefficient ne as the “most important” i.e. as 608 

the input factor requiring further investigations over the crisis period, whatever the part of the 609 

landslide (upper or lower). In practice, the estimation of this parameter is strongly dependent 610 

on the availability of lab tests at small strains, where the behaviour is truly elastic (e.g. strains 611 

lower than 10-4). This condition is not realized for classical triaxial tests where the accuracy is 612 

not better than 10-3 (e.g. Biarez and Hicher, 1994) so that this parameter is usually deduced 613 

using standard values estimated for analogous types of soil. Nevertheless, such an analogy-614 

based approach is hardly achievable in the La Frasse landslide case as the considered soil 615 

material, being on the slip surface, is inherently heterogeneous. 616 

The sensitivity analysis also outlines the plastic compressibility β as “important” for further 617 

investigations in the lower part of the landslide i.e. where the evolution of pore pressures was 618 

the most important. In practice, this parameter can be obtained from oedometer tests. No 619 

further conclusions can be drawn without increasing the knowledge on the “true” simulator, 620 

for the third (or lower) “most important input factor” due to the uncertainty on the GP model. 621 

These conclusions are valid for the considered illustrative case especially regarding the 622 

assumptions on the range of uncertainty assigned to all input factors (variation in a range of 623 

25 % around the original values). Within a procedure aiming at calibrating the observed 624 

displacements with the simulated ones, the uncertainty on each input factor should be 625 

adequately represented making use of any kind of information related to the measurement 626 

procedure of the constitutive model parameters (number of samples, estimation of 627 



measurement error, possibility to construct empirical probability distribution, error of 628 

calibration between observed and simulated curves, etc.). 629 

Concluding remarks and further works 630 

Landslide numerical modelling involves a large number of input factors, whose influence and 631 

importance should be assessed to guide risk management and possible further investigations 632 

(laboratory or in situ). A variance-based global sensitivity analysis (Saltelli et al., 2008) using 633 

the calculation of Sobol’ indices (Sobol’, 1993; Archer et al., 1997; Sobol’ and Kucherenko, 634 

2005) can provide such guidelines. Nevertheless, such an analysis requires a large number of 635 

direct simulations (i.e. simulator runs), which can be unfeasible in practice for 636 

computationally intensive models (i.e. those characterized by computation times ranging from 637 

several hours to several days). In this paper, we proposed a methodology based on Gaussian 638 

Process meta-modelling to perform such an analysis using a limited number of training 639 

samples. 640 

The construction of the training sample is based on a space-filling approach using Latin 641 

Hypercube sampling. The possible correlation between input factors is not tackled in this 642 

paper and this can be further developed using, for instance, the works of Hamm and co-643 

workers (Hamm et al., 2006). We presented the construction of the meta-model and how to 644 

combine it with a strategy to verify the predictive quality based on a cross-validation 645 

procedure. This methodology is demonstrated on a numerical model of La Frasse 646 

(Switzerland) landslide (Laloui et al., 2004), where the importance of the main constitutive 647 

model parameters describing the slip surface material behaviour is assessed. Due to high 648 

computational costs, the GP model is constructed only using 30 simulator runs, i.e. with a 649 

limited knowledge of the “true” simulator. This induces an additional source of uncertainty 650 

(referred to as code uncertainty of the meta-model) on the sensitivity measures, which is 651 



tackled by treating the GP model from a Bayesian perspective: the full posterior probability 652 

distribution associated with the sensitivity measures is computed and summarized by a 653 

confidence interval used to outline the regions where the GP model is “unsure” with respect 654 

to the sensitivity measures. When a large number of input factors (> 30) are present, the 655 

Bayesian treatment of the GP model may show limitations as it is more computationally 656 

demanding compared to other meta-model techniques (Storlie et al., 2009). However, recent 657 

works (e.g. Marrel et al., 2009) pertaining to variable selection for GP model can be used to 658 

overcome this difficulty. In the identified “unsure” regions, further simulator runs should be 659 

carried out and the choice of the new input configurations can be guided by taking advantage 660 

of the recent advances in adaptive design of experiments (e.g. Gramacy and Herbert, 2009), 661 

which constitutes a possible future direction. 662 
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FIGURES CAPTIONS 805 

 806 

Fig. 1: Schematic representation of the infinite slope model (adapted from Hansen, 1984). 807 



 808 

Fig. 2: Top: comparison between the true values and the estimates of the factors of safety FS 809 

using the GP model constructed with a training sample size of 6 (left) and of 20 (right). The 810 

training input configurations are represented by blue dots. Middle: comparison between the 811 

observed FS and the estimates within a “leave-one-out” cross validation procedure. Bottom: 812 

comparison between the true values (red dots) and the estimates of the main effects for the 813 

slope thickness z and of the slope angle θ (blue dots). The bounds of the confidence intervals 814 

associated with both GP models are represented by black cross-type markers. 815 



 816 

Fig. 3: Overview of the landslide numerical model (adapted from Laloui et al., 2004). The 817 

slip surface is outlined by the light coloured orange surface. The observation point 1 (in the 818 

upper part of the landslide) and observation point 2 (in the lower part of the landslide) used 819 

for the sensitivity analysis of the horizontal displacements are respectively outlined by a blue 820 

and a red coloured square-type marker. 821 

 822 

Fig. 4: Temporal evolution of the training samples corresponding to the horizontal 823 

displacements (m) calculated for 30 different input configurations of the Hujeux law 824 

parameters (at the observation point 1 in the upper part of the landslide (left) and at the 825 

observation point 2 in the lower part of the landslide (right)). 826 



 827 

Fig. 5: Temporal evolution of the coefficient of determination R² for the “leave-out-out” cross 828 

validation procedure of the GP models constructed at each instant of the crisis period at the 829 

observation point 1 in the upper part of the landslide (black dashed line) and at the 830 

observation point 2 in the lower part of the landslide (black straight line). The threshold of 831 

80 % indicating a “satisfactory” predictive quality is outlined by a horizontal red straight line. 832 



833 

 834 

Fig. 6: Temporal evolution during the crisis period of the mean of the main effects (blue 835 

straight line) at the observation point 1 in the upper part of the landslide (left) and at the 836 



observation point 2 in the lower part of the landslide (right) for the first (green straight line, 837 

top) and the second (green straight line, bottom) “most important” input factor. The black 838 

dashed lines represent the 5% and the 95 % quantile. 839 

 840 

Fig.7: Mean of the main effect (blue dots) for each input factor of the slip surface constitutive 841 

law at different instants of the crisis period (30 days (top), 150 days (middle) and 210 days 842 

(bottom)) at the observation point 1 in the upper part of the landslide (left) and at the 843 

observation point 2 in the lower part of the landslide (right). The bounds of the confidence 844 

intervals (5% and 95 % quantile) are outlined by black cross-type markers. 845 

 846 



TABLES 847 

 848 

Table 1: Comparison between the “true” and the estimates of the main effects for the infinite 849 

slope analytical model. µ corresponds to the mean of the main effect computed with the GP 850 

model. CI corresponds to the confidence interval defined by the 5 % and the 95 % quantile 851 

computed with the GP model. 852 

Input factor True model GP model constructed 

with 6 training samples 

GP model constructed 

with 20 training samples 

Thickness z (m) 18.41 % µ=12.74 %  

CI=[6.48 ; 21.73] % 

µ=20.02 % 

CI=[16.90 ; 23.29] % 

Slope angle θ (°) 78.76 % µ=77.01 %  

CI=[58.41 ; 87.43] % 

µ=79.77 % 

CI=[77.90 ; 81.68] % 

 853 

Table 2: Range of values for the slip surface properties of the La Frasse landslide (variation in 854 

a range of 25 % around the original values given in Laloui et al., 2004) 855 

Input 

factor 

Vol. 

comp. 

mod. 

Shear 

mod. 

Non-

linearity 

coeff. 

Internal 

friction 

angle 

Dilatancy 

angle 

Plastic 

comp. 

Initial 

critical 

pressure 

Symbol K G ne φ Ψ β pc0 

Unit MPa MPa - ° ° - MPa 

Lower 

value 

180 83.25 0.225 19.125 14.25 20.625 0.375 

Upper 

value 

300 138.75 0.375 31.875 23.75 34.375 0.625 

 856 


