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Large-scale landslide prediction is typically based on numerical modelling, with computer codes generally involving a large number of input parameters. Addressing the influence of each of them on the final result and providing a ranking procedure may be useful for risk management purposes. This can be performed by a variance-based global sensitivity analysis.

Nevertheless, such an analysis requires a large number of computer code simulations, which appears impracticable for computationally-demanding simulations, with computation times ranging from several hours to several days. To overcome this difficulty, we propose a "metamodel"-based strategy consisting in replacing the complex simulator by a "statistical approximation" provided by a Gaussian-Process (GP) model. This allows computation of sensitivity measures from a limited number of simulations. For illustrative purposes, the proposed methodology is used to rank in terms of importance the properties of the

Introduction

Landslides are very complex phenomena controlled by a range of processes. Geological history, lithology and structure, slope relief and shape, weather and climate, seismicity and human activity can be identified as the main causative factors [START_REF] Crosta | Dating, triggering, modelling, and hazard assessment of large landslides[END_REF]. The associated risk to communities can be high (e.g. [START_REF] Evans | Landslides from massive rock slope failure[END_REF] and thus, predicting landslide behaviour is a major concern.

Due to the recent advances in computer modelling (e.g. in processor performance) and in particular in the finite element method (e.g. [START_REF] Van Den Ham | Finite Element simulation of a slow moving natural slope in the Upper-Austrian Alps using a visco-hypoplastic constitutive model[END_REF], numerical models are commonly used in practice to get a better understanding of the landslide behaviour and to predict its evolution. The main drawback of such models is the high number of input factors required for analysis. Global sensitivity analysis of complex numerical models can then be used to determine: (1) which input factors contribute the most to the output variability (within the "factors' prioritisation setting" as described by [START_REF] Saltelli | Global sensitivity analysis: The Primer[END_REF]; (2) which input factors interact with each other; and (3) which input factors are insignificant and can be eliminated to "simplify" the model (within a "factors' fixing setting", [START_REF] Saltelli | Global sensitivity analysis: The Primer[END_REF].

Such an analysis is useful in identifying which input factors require further investigations to reduce uncertainties in the computer code results, hence providing guidelines for risk management (Saltelli, 2002b).

Among the existing sensitivity methods, variance-based methods have proved to be effective (Saltelli et al., 2000). In this article, we focus on the method of Sobol' indices [START_REF] Sobol | Sensitivity estimates for non linear mathematical models[END_REF][START_REF] Archer | Sensitivity measures, ANOVA like techniques and the use of bootstrap[END_REF][START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models[END_REF]. Unlike traditional linear or rank regression-based methods, these indices allow representing the sensitivity of a general model without assuming any kind of linearity or monotonicity in the model [START_REF] Saltelli | About the use of rank transformation in sensitivity of model output[END_REF]. In practice, the computation of Sobol' indices uses a Monte Carlo sampling strategy.

An example of application in the field of landslide modelling with applications of moderate complexity is provided by [START_REF] Hamm | Variance-based sensitivity analysis of the probability of hydrologically induced slope instability[END_REF]. Such an approach, however, appears hardly applicable for more computationally demanding models, as it requires a large number of computer code evaluations. For instance, the study of [START_REF] Hamm | Variance-based sensitivity analysis of the probability of hydrologically induced slope instability[END_REF] required ten thousand model realisations, corresponding to about 20 hours of computation time (on a 2 GHz Pentium 4 PC). The same sensitivity analysis would require 208 days using a model that takes 30 minutes and 2500 days using a model that takes 6 hours to compute.

To overcome this difficulty, a first solution is to use a distributed parallel computing methodology, thus requiring an appropriate grid computing architecture and the optimization of computing resources (e.g. [START_REF] Dupros | IGGI, a computing framework for large scale parametric simulations: application to uncertainty analysis with toughreact[END_REF][START_REF] Boulahya | Footprint@work, a computing framework for large scale parametric simulations: application to pesticide risk assessment and management[END_REF].

In this paper, an alternative is proposed using a limited number of computer code runs (also named "simulator", O ' Hagan, 2006), which consists in replacing (i.e. approximating) the simulator by a surrogate model with low computation time, also named a "meta-model", to compute the Sobol' indices (i.e. the sensitivity measures). Various "meta-models" exist (e.g. linear regression, nearest neighbour method, Multivariate Adaptative Regression Spline, neural network and Gaussian Process); see, for example, [START_REF] Storlie | Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models[END_REF] for a recent review.

The meta-model uses a limited number of simulator runs, i.e. input-output pairs (corresponding to the training sample), to infer the values of the complex simulator output given a yet-unseen input configuration. Such an approximation introduces a source of uncertainty referred to as "code uncertainty" associated with the meta-model (O' Hagan, 2006), so that the sensitivity measures computed with the meta-model are "uncertain".

In the present article, we choose to solve the described problem of approximation (and of inference) under the Bayesian formalism treating the simulator as an "unknown" function in the sense that the simulator output for any yet-unseen input configuration is unknown until the simulator is actually run for the considered configuration (Oakley and O' Hagan, 2004). We choose to use the concept of an emulator corresponding to a statistical approximation so that a prior probability distribution is assigned to the simulator outputs and updated according to the usual Bayesian paradigm given the training sample. This approach returns not only the most likely value for the output given any input configuration, but also an entire probability distribution (O' Hagan, 2006). This distribution can be used to estimate a level of confidence when the predictive quality of the meta-model is not high due to a small training data (see, for instance, [START_REF] Marrel | An efficient methodology for modeling complex computer codes with Gaussian processes[END_REF]and 2009[START_REF] Storlie | Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models[END_REF]. A Gaussian Process (GP) is chosen as the prior model for the simulator. It has been widely used when designing computer experiments [START_REF] Sacks | Design and analysis of computer experiments[END_REF][START_REF] Kennedy | Bayesian calibration of computer models (with discussion)[END_REF][START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF].

In the first section, the Sobol' decomposition method is described in the general framework of the variance-based global sensitivity approach [START_REF] Saltelli | Global sensitivity analysis: The Primer[END_REF].

Then, the GP model used as a meta-model of the computationally intensive simulator is described in the framework of the stochastic processes for computer code experiments under the Bayesian regression formalism. The methodology for computing the Sobol' indices using the GP model is described and illustrated in two applications. The first application is a simple analytical model based on "infinite slope analysis" [START_REF] Hansen | Landslide Hazard Analysis[END_REF]. This allows us to compare the sensitivity measures computed using the "true" model with those computed using the GP model. Finally, the application of this methodology to a La Frasse (Switzerland) landslide model [START_REF] Laloui | Hydromechanical modeling of crises of large landslides: application to the La Frasse Landslide[END_REF] is presented and we show how to use the sensitivity measures to guide the decision-making process for further site investigations.

Global sensitivity analysis by the Sobol' decomposition method

Introduction on the variance-based sensitivity analysis

Consider the simulator g and the scalar output y determined from a vector of n input factors

{ } n i i x , , 1 K = = x so that ) (x g y = .
Considering the n-dimensional vector as a random vector of independent random variable X i , then the output Y is also a random variable (as a function of a random vector). A variancebased sensitivity analysis aims at determining the part of the total unconditional variance V Y of the output Y resulting from each input random variable X i . The total variance V Y can be expressed as follows (Saltelli et al., 2000[START_REF] Saltelli | Global sensitivity analysis: The Primer[END_REF]:
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the conditional expectation of Y given that the i th input factor X i has a fixed value x i , the j th input factor X j has a fixed value x j , …etc.

The variance of the conditional expectation V i represents the first order effect of the input factor X i taken alone, whereas the higher order indices account for possible mixed influence of various input factors.

The Sobol' decomposition method

Presentation

To determine the partial variances of Y, [START_REF] Sobol | Sensitivity estimates for non linear mathematical models[END_REF] proposes the following decomposition of g into summands of increasing dimension provided that g is integrable:
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where g 0 corresponds to the mean constant value of the function g and each term can be evaluated through multidimensional integrals as follows:

[ ] ( ) ( ) ∫ ∫ = ∫ ∫ = = 1 0 1 1 1 0 1 0 1 0 0 ... ,..., n n dx dx x x g d g Y E g K K x x (4) ( ) [ ] ( ) 0 1 0 1 0 0 g d g g x X Y E x g i i i i i - ∫ ∫ = - = = - x x K (5) ( ) [ ] ( ) ( ) ( ) ( ) ∫ - - - ∫ = - - - = = = - 1 0 0 1 0 0 , , j j i i ij j i j j i i j i ij x g x g g d g g g g x X x X Y E x x g x x K (6) with i d -
x denotes the integration over all input factors except x i and
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, the integration over all input factors except both x i and x j . Similar formulae can be obtained for higher order terms.

The total variance Y V can then be expressed as:
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while the partial variances read as follows:
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Definition of the Sobol' indices

The Sobol' indices s i i S .... 1 describe which amount of the total variance is due to the uncertainties of input factors in the set { }

s i i , , 1 K
and is expressed as the ratio between The first-order sensitivity index S i for input factor X i is expressed as follows:
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The sensitivity measure i S is referred to as "the main effect of X i " and can be interpreted as the expected reduction in the total variance of the output Y (i.e. representing the uncertainty in Y) if the true value of the input factor X i was known. This index provides a measure of importance useful to rank the input factors (Saltelli et al., 2000[START_REF] Saltelli | Global sensitivity analysis: The Primer[END_REF].

The main effect and the higher order Sobol' indices satisfy the following property:
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Defining i Sas the sum of all the terms s i i S .... 1 but the i th index, the total effect index Ti S of X i is defined as the total contribution of the i th input factor to the total variance. It reads as follows (using eq. 10):
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means that the input factor X i has no effect. Thus, it can be fixed at any value over its uncertainty range [START_REF] Saltelli | Global sensitivity analysis: The Primer[END_REF].

As the total number of sensitivity indices reaches 2 n -1 (Saltelli et al., 2000), hence representing a high computational cost, the sensitivity analysis is generally limited, in practice, to the pair of indicators corresponding to the main effect i S and to the total effect Ti S of X i [START_REF] Saltelli | Global sensitivity analysis: The Primer[END_REF].

Numerical implementation

The evaluation of the Sobol' indices can be carried out through a Monte Carlo sampling strategy (Saltelli et al., 2000), which remains an approximation of the true value of the sensitivity indices. Thus, the quality of the approximation directly depends on the sample size.

Let us consider m sampled elements { } m j j ,..., 1
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in the n-dimensional space of input factors:
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and the subscripts S a and S b in eq. ( 12) indicate that two sampling data matrices are being used.

The main and total effects can be estimated using the sampling strategy proposed by Saltelli (2002a) at a computation time cost of m×(n+2) model evaluations. Additional computational efficiency can be achieved by making best use of sampling designs, for instance Sobol' quasirandom sequences, and estimators, for instance Jansen's estimator [START_REF] Saltelli | Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[END_REF].

However, the computational effort for simulators with computation time ranging from several hours to several days may still be high and the present work focuses on a strategy based on Gaussian Process meta-modelling to reduce this effort.

Gaussian Process (GP) modelling

Description of the stochastic process framework

First, the deterministic response y(x) of the simulator is treated as a realization of a random variable Y(x), which can be decomposed into a deterministic function f, which represents the mean (i.e. expectation of Y), and a stochastic function Z as proposed by [START_REF] Sacks | Design and analysis of computer experiments[END_REF] and reads as follows:
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Note that the case of multiple outputs is beyond the scope of the present article and the interested reader is advised to refer to [START_REF] Le | Statistical Analysis of Environmental Space Time Processes[END_REF].

Without prior information between the modelling inputs and outputs, f is chosen as a multivariate linear regression model [START_REF] Martin | On the use of kriging models to approximate deterministic computer models[END_REF] so that:
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is the corresponding regression vector with f i (i=0,1,…,n), the basis functions. Assuming linearity for the mean f, we have: f 0 (x)=1 and f i (x)=x i for i=1,…,n.

The stochastic part Z can be seen as a confidence measure on the model output mean. It represents a zero mean random process, characterized by its n×n covariance matrix Σ S so that an element at the j th row and k th column of Σ S is expressed as:
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where x (j) is the j th input vector (with j=1…N S ) and Var[Z]=σ 2 . The correlation function ρ provides the interpolation and spatial correlation properties.

Treating the simulator g within the stochastic process framework allows the deterministic part f to account for the global behaviour of g, whereas the correlation terms allow the meta-model to "locally" interpolate the known data by introducing a strong correlation in the neighbourhood of these points. Complex input-output behaviours are hence better represented (e.g. see [START_REF] Langewisch | A comparison of polynomial response surfaces and Gaussian rocesses as metamodels for uncertainty analysis with long-running computer codes[END_REF].

Description of the Gaussian correlation model

Various authors (e.g. [START_REF] Stein | Interpolation of Spatial Data[END_REF][START_REF] Le | Statistical Analysis of Environmental Space Time Processes[END_REF] have discussed different types of correlations functions. For our purposes, the study is restricted to the Gaussian correlation model so that the value of the correlation matrix only depends on the normalised distance between the input vectors ) ( j x and ) (k

x . Assuming the correlation model is invariant to any translation in the input space (e.g. [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF], the Gaussian correlation function reads as follows:
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where θ={θ i } i=1,…,n are the correlation lengths, also referred to as "hyper-parameters" (e.g. see [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF]. θ i parameter quantifies the rate at which the output varies as i th input factor is changed.

Note that in case of data measurements errors or non deterministic computer code, a constant regularization term referred to as "nugget effect" may be defined, hence introducing a white noise.

Principle and prediction under the Bayesian formalism

In this paper, we focus on the stationary GP model which fits the stochastic framework and has been broadly used in designing computer experiments [START_REF] Sacks | Design and analysis of computer experiments[END_REF][START_REF] Kennedy | Bayesian calibration of computer models (with discussion)[END_REF][START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF]. , the Bayes theorem is used to refine the mentioned prior information in order to yield the posterior distribution of the output, known as the "emulator" (e.g. O' Hagan, 2006). This latter not only provides an expected value for any "yet-unseen" input configuration, but it also gives an entire posterior distribution given the observed data.

Formally, the probability ( )
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given S X , is expressed under the GP assumption, as follows:

( )

( ) ( ) S S S S F G p Σ B X X Y , . ~ (17) 
Considering a new vector ( )
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Within the Bayesian framework, the posterior distribution of the computed output random 
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Σ , the inverse of the covariance matrix associated to the training input data S X .

The conditional mean of eq. ( 18b) is used as a predictor and the conditional variance in eq. ( )
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will be small so that the predicted variance will be large.

In a more general manner, if we consider two new test candidates u and v, the general expression of the conditional GP model can be written as:
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The conditional mean is used as a predictor and is expressed as in eq. ( 18b).

The conditional covariance provides the confidence on the prediction and reads as follows:
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The regions of the input space, where few data are available will be underlined by higher variance.

The main difficulty in constructing a conditional GP model given a training sample resides in determining the parameters corresponding to the regression coefficient vector B, the hyperparameters θ and the variance σ². A first approach consists in estimating them as solutions of the optimization problem using the maximum likelihood method, e.g. implemented in the GEM-SA software [START_REF] O'hagan | Bayesian analysis of computer code outputs: A tutorial[END_REF] and the MATLAB toolbox DACE [START_REF] Lophaven | DACE-A Matlab kriging toolbox[END_REF].

However, the optimisation algorithms used for the parameters identification may show limitations, especially in case of high dimension problem (e.g. see [START_REF] Marrel | An efficient methodology for modeling complex computer codes with Gaussian processes[END_REF].

Besides, such an approach may underestimate the variance in the predictions of new observations [START_REF] Cressie | Statistics for Spatial Data[END_REF].

In this paper, an approach based on the Bayesian framework (e.g. [START_REF] Rasmussen | Evaluation of Gaussian Processes and other Methods for Non-linear Regression[END_REF]) is chosen so that the hyper-parameters are given prior distributions p(θ). In the Bayesian framework, the Markov Chain Monte Carlo methods [START_REF] Gilks | Markov Chain Monte Carlo in Practice[END_REF] are used to integrate over the posterior distribution p(θ|X S ,Y S ) associated with the GP parameters i.e. the training sample is used to update the GP parameters. The posterior distribution of the hyper-parameters will be hence concentrated on values that are consistent with actually observed data. This procedure is implemented in the package named "TGP" of the "R" software ("R" Development Core Team, 2009) by Gramacy and co-workers [START_REF] Gramacy | tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models[END_REF][START_REF] Gramacy | Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models[END_REF].

Further theoretical details can be found in Gelman et al. (1995) and [START_REF] Gramacy | Adaptive Design and Analysis of Supercomputer Experiments[END_REF]. Though computationally more intensive [START_REF] Storlie | Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models[END_REF], this approach presents the attractive feature to incorporate the uncertainty related to the construction of the GP model, so that the level of confidence associated with the "meta-model"-computed sensitivity measures also takes this source of uncertainty into account (see step 4 of section 3.4.).

A "GP-based" methodology for sensitivity analysis

In this section, we describe the methodology to compute the sensitivity measures (i.e. the Sobol' indices) using a GP model as a surrogate model of the computationally intensive simulator.

Step 1: representation of the input factor uncertainty

The first step is to characterize and mathematically represent the uncertainty (range and form of the probability distribution) on each of the input factors. This representation can have a strong influence on the final sensitivity results, hence on risk management decision making (Saltelli, 2002b).

Representing the uncertainty through empirical probability distributions requires a large amount of data (laboratory or in situ measurements), which may not be practical in many situations. Thus, knowledge on the range of uncertainty is commonly evaluated either based on physical reasoning, on analogies with similar cases or simply from expert opinions, whereas the mathematical representation of the probability distribution may either be theoretically known or assumed. In a situation where "sparse, vague and incomplete" data are available, a common approach consists in assigning a uniform probability distribution based on the "maximum entropy" approach [START_REF] Gzyl | The Method of Maximum Entropy[END_REF].

Step 2: setting training data

The objective then is to run the simulator for a limited number of times N S in order to create a mapping between the input factor and the computer code output domain. The number N S should be defined as a compromise between the minimization of the computation time cost and the maximization of the input factor domain exploration (directly linked with the accuracy and reliability of the GP model, see step 3).

In this view, we propose to use the Latin hypercube sampling method [START_REF] Mckay | A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF] in combination with the "maxi-min" space-filling design criterion [START_REF] Koehler | Computer experiment[END_REF].

More sophisticated strategies exist mainly based on sequentially adaptive design of experiments adding new training candidates where the predictive uncertainty is high (e.g. [START_REF] Gramacy | Adaptive Design and Analysis of Supercomputer Experiments[END_REF]. The use of such approaches is beyond the scope of this paper.

Step 3: constructing the GP model

Using the GP model instead of the simulator introduces an additional source of uncertainty referred to as "code uncertainty" (O' Hagan, 2006). In the regions where the true simulator is not evaluated, we are uncertain about what the "true" simulator would introduce. This sort of uncertainty can be reduced by increasing our knowledge of the true simulator, i.e. by increasing the training sample size. Except when a "nugget" effect is included, the GP model is an exact interpolator, so that residuals of the training data cannot be directly used to validate the approximation [START_REF] Marrel | An efficient methodology for modeling complex computer codes with Gaussian processes[END_REF]. The key aspect for validating the "statistical" approximation is to estimate the expected level of fit (i.e. predictive quality) of the GP model to a data set that is independent of the data (i.e. "yet-unseen" data) that were used to train the GP model.

As additional simulator runs are costly, using a test sample of new data might be impractical and cross-validation procedures such as the "k-fold" cross-validation technique [START_REF] Hastie | The Elements of Statistical Learning[END_REF] should be used. In this cross-validation procedure, the initial training sample is randomly partitioned into k subsets. In a first step, a single subset is used as the validation data for testing the GP model, and the remaining k-1 subsets are used as training data for the construction of the GP model. For each step, the k validation data are estimated and the coefficient of determination R² for the procedure is computed as follows:
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where y represents the vector of observations in the validation set; y is the mean of the corresponding sample and y ˆ, the vector of predicted values using the GP model.

The coefficient R² provides a metric of the predictive quality so that a value close to 100 % indicates that the GP model is successful in matching the validation data. A typical threshold of 80 % is commonly used to qualify the predictive quality as "satisfactory" (e.g. [START_REF] Marrel | An efficient methodology for modeling complex computer codes with Gaussian processes[END_REF].

The cross-validation process is then repeated k times using each of the k subsets as validation samples. For small training sets, the cross validation procedure with k=1 is usually used corresponding to the so-called "leave-one-out" cross validation procedure.

Step 4: estimating the sensitivity measures

The most likely value ( ) i S μ for the sensitivity measures is computed using the conditional mean of the GP model in eq. 18b. Additional useful information for risk management purposes is the level of confidence (or accuracy) related to the sensitivity analysis based on the GP model. A confidence interval ( ) i S CI can be defined with bounds corresponding to the 5% and to the 95 % quantile of the full posterior distribution of the sensitivity measures. This confidence interval both summarizes the "code uncertainty" associated with the meta-model (O' Hagan, 2006) and the uncertainty on the estimation of the GP model parameters (see section 3.3).

Illustrative analytical model

In this section, we consider the infinite slope analytical model (e.g. [START_REF] Hansen | Landslide Hazard Analysis[END_REF] in order to illustrate the methodology described in section 3.4. This model is of course not a computationally demanding function, but we imagine it as representing a calculation that may take several minutes or even hours of computation to evaluate. Besides, using this analytical model also allows us to compare the results of the sensitivity analysis using the "true" model with those using the GP model.

Description of the analytical model

The stability of the infinite slope model as depicted in Fig. 1 is evaluated by deriving the factor of safety FS, which corresponds to the ratio between the resisting and the driving forces acting on the slope (eq. 22):
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where C is the cohesion of the soil material; φ, the friction angle; θ, the slope angle; γ , the soil unit weight; γ w , the water unit weight; z, the thickness of slope material above the slip plane; and m, the ratio between thickness of surficial saturated slope material and z. If FS is lower than 1.0 the potential for failure is high.

Sensitivity analysis of the analytical model

For illustrative purposes, we only considered the thickness z and the slope angle θ as uncertain input factors. The other input factors were assumed fixed: C=10 kPa, φ=25°, γ=22 kN.m -3 , γ w = 9.81 kN.m -3 and m=90 %.

The objective was to identify whether z or θ contributes the most to the FS variability within a "factors' prioritisation setting". It is assumed that very sparse data are available to characterize the uncertainty on these input factors so that z uniformly varies between 5 and 25 m and θ uniformly varies between 25° and 35° (step 1). We generated two different training samples of respectively 6 and 20 training data of the form {z ; θ ; FS}, using the Latin hypercube sampling approach (step 2) and for each training sample, a GP model was constructed.

[Fig. 2 about here] goodness of fit (eq. 22) estimated for both GP models was equal to 90.9 % for the first training sample and to 98.8 % for the second one, hence showing a very good match for both meta-models. The quality of the approximation was then estimated through a "leave-one-out" cross validation procedure (step 3): we obtained a coefficient of determination of 96.2 % for the first sample and 99.7 % for the second one, hence indicating a "high" predictive quality.

The estimated FS using both GP models (Fig. 2, middle) were compared to the "true" observed FS. The closer the dots to the straight black line, the better the approximation.

The results for the computation of the main effects required (step 4) m×(n+2)=2500×(2+2)=10000 model evaluations using the sampling strategy of Saltelli (2002a). The most likely of the main effects calculated with both GP models (blue dots in Fig. 2, bottom) were compared to the main effects obtained from direct simulations (red dots on Fig. 2, bottom) by means of the R package "sensitivity" and the function referred to as Sobol2002 (available at http://cran.r-project.org/web/packages/sensitivity/index.html). These results are summarized in Table 1.

[Table 1 about here]

We see that differences are larger for the GP model constructed with the lower training sample size but, however, the "true" values for the main effects still lie within the confidence interval bounded by the 5 % and the 95 % quantile (black cross-type marker in Fig. 2, bottom). Not surprisingly, increasing the number of training samples (i.e. our knowledge of the true function) decreases the range of code uncertainty as well as the differences between the true values and estimates (Table 1).

Computationally intensive numerical model

In this section, we present the application of the proposed GP-based sensitivity analysis methodology (section 3.4.) to the landslide finite-element model originally used for the simulation of the La Frasse (Switzerland) landslide during the 1994 crisis period [START_REF] Laloui | Hydromechanical modeling of crises of large landslides: application to the La Frasse Landslide[END_REF].

General description of the landslide model

The La Frasse landslide covers a total area of roughly 1000×1000 m², and represents an average thickness of 80 m in its upper part and 40 m in its lower part. The total volume of the La Frasse landslide reaches 73 million m 3 . Since 1975, a constant movement has been observed in its upper and central parts, varying between 10.10 -2 and 15.10 -2 m per year (Noverraz and Bonnard, 1988;[START_REF] Bonnard | Large Landslides and Possibilities of Sudden Reactivation[END_REF]. The evolution of the groundwater table is considered to be at the origin of the sliding and the instabilities were mainly observed during the 1994 crisis (over a period of nearly 300 days). Therefore, in order to assess the effect of the hydraulic regime on the geomechanical behaviour of the landslide, finite-element simulations considering a 2D cross-section through the centre of the landslide were performed by [START_REF] Laloui | Hydromechanical modeling of crises of large landslides: application to the La Frasse Landslide[END_REF] using the finite element program GEFDYN [START_REF] Aubry | Gefdyn software -Logiciel d'analyse du comportement mécanique des sols par éléments finis avec prise en compte du couplage sol-eau-air (Gefdyn software[END_REF].

The model is composed of 1694 nodes, 1530 quadrangular elements, and six soil layers derived from the geotechnical investigations. Fig. 3 gives an overview of the model, as well as the boundary conditions used for analysis. Instabilities observed in 1994 were triggered by pore pressure changes occurring at the base of the slide (see [START_REF] Laloui | Hydromechanical modeling of crises of large landslides: application to the La Frasse Landslide[END_REF] for further details).

[Fig. 3 

about here]

The general behaviour of the landslide is strongly correlated to the properties of the slip surface. The complex behaviour of the slip surface material was modelled using the Hujeux elastoplastic multi-mechanism constitutive model [START_REF] Aubry | A double memory model with multiple mechanisms for cyclic soil behaviour[END_REF][START_REF] Hujeux | Une loi de comportement pour le chargement cyclique des sols[END_REF][START_REF] Lopez-Caballero | Nonlinear numerical method for earthquake site response analysis -elastoplastic cyclic model and parameter identification strategy[END_REF][START_REF] Lopez-Caballero | Numerical simulation of liquefaction effects on seismic SSI[END_REF]) and the Mohr-Coulomb criterion was assumed for the other soil materials.

The Hujeux constitutive model permits coverage of a large range of deformation and takes into account: (1) the influence of confinement and stress path on the moduli; (2) the effects of over-consolidation; and (3) the influence of the void ratio. It can be used for granular as well as clayey soil behaviours and it is based on a Coulomb type failure criterion and the critical state concept. The volumetric and deviatoric hardening regimes implemented in the Hujeux model lead to a dependence on the consolidation pressure as in the Cam-Clay family models, and to the evolution of the plastic yield surface with the deviatoric and volumetric plastic strains. Moreover, the model accounts for dilatancy/contractance of soils and non-associated flowing behaviour with evolution of the plastic strain rate through a Roscoe-type dilatancy rule.

As outlined by [START_REF] Laloui | Hydromechanical modeling of crises of large landslides: application to the La Frasse Landslide[END_REF], the main parameters for the slip surface materials are: (1) the bulk (K) and shear (G) elastic modules, which are assumed to depend on the mean effective stress through a power-type law of exponent n e ; (2) the critical state and plasticity parameters, essentially the friction angle φ at perfect plasticity, the plastic compressibility β; and (3) the dilatancy angle Ψ, appearing in the flow rule and defining the limit between soil dilatancy and contractance.

Note that these parameters can be directly measured from either in situ or laboratory test results [START_REF] Lopez-Caballero | Nonlinear numerical method for earthquake site response analysis -elastoplastic cyclic model and parameter identification strategy[END_REF][START_REF] Lopez-Caballero | Numerical simulation of liquefaction effects on seismic SSI[END_REF]. The other Hujeux law parameters, appearing in the flow rule, the hardening and the threshold domains definition are categorized as "not-directly measurable" [START_REF] Lopez-Caballero | Numerical simulation of liquefaction effects on seismic SSI[END_REF]) and are estimated through numerical calibration techniques between the observed/experimental data and the simulated ones.

Sensitivity analysis using the GP-based methodology

The sensitivity analysis using the GP-based methodology (see section 3.4.) was carried out to assess the importance of the input factors of the Hujeux constitutive model describing the slip surface behaviour within a "factors' prioritisation setting", so that the main effects (first order Sobol' indices) were used for ranking.

The quantity of interest was chosen as the horizontal displacement calculated at two observation points, namely in the upper (observation point 1, Fig. 3), and lower parts of the landslide (observation point 2, Fig. 3). The sensitivity analysis was carried out in a dynamic manner at each step of the 300 days long crisis period (decomposed into a hundred time steps).

It was focused on the main measurable parameters of the Hujeux constitutive model (total number of seven input factors), the others being kept constant i.e. treated with "no uncertainty". The properties of the other soil layers were assumed to be constant as well.

Step 1: representation of the input factor uncertainty

In this illustrative study, our objective was to explore the situation where the same "level of uncertainty" is associated with the parameters of Hujeux model: a 25 % variation around the original values identified by Laloui and co-authors [START_REF] Laloui | Hydromechanical modeling of crises of large landslides: application to the La Frasse Landslide[END_REF] was affected to each of the seven input factors (Table 2). Considering no further information on the uncertainty, a uniform probability distribution was assigned to each of these input factors (see section 3.4.1.).

[Table 2 about here]

Step 2: setting training data

A total number of 30 input parameter configurations was generated. The resulting horizontal displacements computed over the crisis period are shown on Figure 4 for the observation points 1 and 2. For a given input configuration, a simulator run required ≈96 hours on a computer unit (CPU) with a 2.6 GHz dual core processor and 1 GB of RAM. The training sample was generated using a grid computing architecture or computer cluster composed of 30 CPU, so that all simulations were performed in parallel.

[Fig. 4 about here]

Step 3: constructing the GP model

At each step of the 1994 crisis period, a GP model was constructed using the 30 training data to approximate the horizontal displacements at the observation points 1 and 2.

A "leave-one-out cross-validation" procedure was carried out for each step in order to assess the predictive quality of the GP models. Fig. 5 depicts the temporal evolution of the coefficient of determination R² for the cross-validation procedure.

During the first half of the crisis period (first 150 days), R² decreases over time for both observation points between 99.9 % and ≈95 %, hence indicating that the predictive quality is "high" over this period. During the second half of the crisis period, the quality is still satisfactory if we consider observation point 2 (R² varying between ≈80 % and ≈95 %, see [START_REF] Marrel | An efficient methodology for modeling complex computer codes with Gaussian processes[END_REF], whereas it can be qualified as "low to moderate" for observation point 1 (R² steeply decreasing from ≈95 % to ≈62 %), hence indicating possibly high uncertainty on the GP model.

[Fig. 5 about here]

Step 4: estimating the sensitivity measures

The main effects were calculated using the sampling strategy of Saltelli (2002a), hence requiring m×(n+2)=1000×(7+2)=9000 GP model evaluations. Preliminary convergence tests were carried out for m=250, 500, 1000 and 2000: they showed that m=1000 yields satisfactory convergence of the sensitivity measures to two decimal places (+/-0.025).

The total computation time of the GP-based sensitivity analysis reached a total of 108 hours (4.5 days), including the generation of the training sample (≈4 days), the construction of a GP model at each step of the crisis period (≈3 hours) and the cross-validation procedure (≈3 hours).

If the same analysis had been undertaken by direct simulations, the total computation time would have reached 9000/30×96=28800 hours (1200 days) using the same 30 CPU cluster. To achieve a computation time of 108 hours, a computer cluster composed of 8000 CPU would have been required. provides the temporal evolution of the "second most important" input factor. The input factors (Table 2) were ranked in terms of importance based on the mean of the main effect (blue straight line, Fig. 6) computed with the GP models constructed at each instant of the crisis period.

Analysis of the temporal evolution of the main effects

[Fig. 6 about here] This preliminary ranking of the input factors, only based on the mean of the main effect, was assessed again in a second step taking into account the range of uncertainty associated to the sensitivity measures i.e. using the 5% and to the 95 % quantile of the posterior probability distribution associated to the main effects (black dashed line, Fig. 6). The procedure consisted in qualifying the GP model as "unsure" with respect to the sensitivity measures in regions where the confidence intervals of the first and second most important input factors intersect.

Considering the observation point 1, Fig. 6 (left) shows that for the first 150 days, coefficient n e can be identified as the "first most important" input factor with a mean of the main effect constant at ≈20 %, whereas the dilatancy angle Ψ can be identified as the "second most important" input factor with a mean of the main effect constant at ≈10 %. For the second crisis period, the confidence intervals intersect and the ranking is "unsure". Fig. 7 (left) gives the mean of the main effects and the associated confidence intervals at three different steps of the crisis period, namely 30 days (Fig. 7, top), 150 days (Fig. 7, middle) and 210 days (Fig. 7, bottom). At 30 days, n e can clearly be identified as the first most important input factor, but the ranking of the other input factors is hardly feasible considering the intersecting confidence intervals. Over time (at 150 and 210 days), the confidence intervals for all input factors intersect so that the ranking is "unsure". This result is in agreement with the low coefficient of determination of the cross-validation procedure over the second half of the crisis period (Fig. 5, black dashed line). As a conclusion, the knowledge on the "true" simulator should be increased for the second crisis time period in order to increase the predictive quality of the GP model, hence to narrow the width of the confidence interval.

[Fig. 7 about here] Considering the observation point 2, Fig. 6 (right) shows that before ≈50 days, the confidence intervals intersect and the ranking is "unsure". Over the time period after ≈50 days, coefficient n e can be identified as the "first most important" input factor with a mean of the main effect increasing from ≈20 % to ≈45 %, whereas the plastic compressibility β can be identified as the "second most important" input factor with a mean of the main effect approximately constant and equal to 15 %. As for point 1, Fig. 7 (right) gives the mean of the main effects and the associated confidence intervals for steps 30 days (Fig. 7, top), 150 days (Fig. 7, middle) and 210 days (Fig. 7, bottom). It shows that over time, n e and β can be identified "with certainty" as the "first and the second most important input factors" for steps 
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Table 1: Comparison between the "true" and the estimates of the main effects for the infinite slope analytical model. µ corresponds to the mean of the main effect computed with the GP model. CI corresponds to the confidence interval defined by the 5 % and the 95 % quantile computed with the GP model.
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 2 Range of values for the slip surface properties of the La Frasse landslide (variation in a range of 25 % around the original values given in[START_REF] Laloui | Hydromechanical modeling of crises of large landslides: application to the La Frasse Landslide[END_REF] 

			model	GP model constructed	GP model constructed
				with 6 training samples	with 20 training samples
	Thickness z (m)	18.41 %	µ=12.74 %		µ=20.02 %
				CI=[6.48 ; 21.73] %		CI=[16.90 ; 23.29] %
	Slope angle θ (°)	78.76 %	µ=77.01 %		µ=79.77 %
				CI=[58.41 ; 87.43] %		CI=[77.90 ; 81.68] %
	Input	Vol.	Shear	Non-	Internal	Dilatancy	Plastic	Initial
	factor	comp.	mod.	linearity	friction	angle	comp.	critical
		mod.		coeff.	angle				pressure
	Symbol	K	G	n e	φ	Ψ		β	p c0
	Unit	MPa	MPa	-	°	°		-	MPa
	Lower	180	83.25	0.225	19.125	14.25	20.625	0.375
	value							
	Upper	300	138.75	0.375	31.875	23.75	34.375	0.625
	value							
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intersecting confidence intervals.

Despite the limited number of simulator runs (30) i.e. the limited knowledge on the "true" simulator, several conclusions can still be drawn to guide future investigations. The sensitivity analysis based on the GP modelling emphasizes coefficient n e as the "most important" i.e. as the input factor requiring further investigations over the crisis period, whatever the part of the landslide (upper or lower). In practice, the estimation of this parameter is strongly dependent on the availability of lab tests at small strains, where the behaviour is truly elastic (e.g. strains lower than 10 -4 ). This condition is not realized for classical triaxial tests where the accuracy is not better than 10 -3 (e.g. [START_REF] Biarez | Elementary mechanics of. soil behaviour[END_REF] so that this parameter is usually deduced using standard values estimated for analogous types of soil. Nevertheless, such an analogybased approach is hardly achievable in the La Frasse landslide case as the considered soil material, being on the slip surface, is inherently heterogeneous.

The sensitivity analysis also outlines the plastic compressibility β as "important" for further investigations in the lower part of the landslide i.e. where the evolution of pore pressures was the most important. In practice, this parameter can be obtained from oedometer tests. No further conclusions can be drawn without increasing the knowledge on the "true" simulator, for the third (or lower) "most important input factor" due to the uncertainty on the GP model. These conclusions are valid for the considered illustrative case especially regarding the assumptions on the range of uncertainty assigned to all input factors (variation in a range of 25 % around the original values). Within a procedure aiming at calibrating the observed displacements with the simulated ones, the uncertainty on each input factor should be adequately represented making use of any kind of information related to the measurement procedure of the constitutive model parameters (number of samples, estimation of measurement error, possibility to construct empirical probability distribution, error of calibration between observed and simulated curves, etc.).

Concluding remarks and further works

Landslide numerical modelling involves a large number of input factors, whose influence and importance should be assessed to guide risk management and possible further investigations (laboratory or in situ). A variance-based global sensitivity analysis [START_REF] Saltelli | Global sensitivity analysis: The Primer[END_REF] using the calculation of Sobol' indices [START_REF] Sobol | Sensitivity estimates for non linear mathematical models[END_REF][START_REF] Archer | Sensitivity measures, ANOVA like techniques and the use of bootstrap[END_REF][START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models[END_REF] can provide such guidelines. Nevertheless, such an analysis requires a large number of direct simulations (i.e. simulator runs), which can be unfeasible in practice for computationally intensive models (i.e. those characterized by computation times ranging from several hours to several days). In this paper, we proposed a methodology based on Gaussian Process meta-modelling to perform such an analysis using a limited number of training samples.

The construction of the training sample is based on a space-filling approach using Latin Hypercube sampling. The possible correlation between input factors is not tackled in this paper and this can be further developed using, for instance, the works of Hamm and coworkers [START_REF] Hamm | Variance-based sensitivity analysis of the probability of hydrologically induced slope instability[END_REF]. We presented the construction of the meta-model and how to combine it with a strategy to verify the predictive quality based on a cross-validation procedure. This methodology is demonstrated on a numerical model of La Frasse (Switzerland) landslide [START_REF] Laloui | Hydromechanical modeling of crises of large landslides: application to the La Frasse Landslide[END_REF], where the importance of the main constitutive model parameters describing the slip surface material behaviour is assessed. Due to high computational costs, the GP model is constructed only using 30 simulator runs, i.e. with a limited knowledge of the "true" simulator. This induces an additional source of uncertainty (referred to as code uncertainty of the meta-model) on the sensitivity measures, which is tackled by treating the GP model from a Bayesian perspective: the full posterior probability distribution associated with the sensitivity measures is computed and summarized by a confidence interval used to outline the regions where the GP model is "unsure" with respect to the sensitivity measures. When a large number of input factors (> 30) are present, the Bayesian treatment of the GP model may show limitations as it is more computationally demanding compared to other meta-model techniques [START_REF] Storlie | Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models[END_REF]. However, recent works (e.g. [START_REF] Marrel | Calculations of Sobol indices for the Gaussian process metamodel[END_REF] pertaining to variable selection for GP model can be used to overcome this difficulty. In the identified "unsure" regions, further simulator runs should be carried out and the choice of the new input configurations can be guided by taking advantage of the recent advances in adaptive design of experiments (e.g. [START_REF] Gramacy | Adaptive Design and Analysis of Supercomputer Experiments[END_REF], which constitutes a possible future direction.