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ABSTRACT 

 

A specific approach is studied to couple two well-known numerical methods, a finite difference 

method (FDM) and a finite element method (FEM) for simulating regional seismic wave propagation 

to local site response. This coupling uses a technique of the “paraxial approximation” in order to input 

in the FEM the seismic wave generated in the FDM. The main advantage of this approach is to locally 

extract an area of interest where non-linear soil response or complex geometry is important from the 

regional wave propagation in a relatively simple medium. This result in taking advantage of both 

methods: the portability of the FDM and the flexibility of the FEM. This paper presents a theoretical 

framework of the paraxial approximation, through which the coupling is realized between the FDM 

and the FEM, and demonstrates some examples for the validation of the proposed coupling technique 

as well as its possible applications. 
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INTRODUCTION 

 

In order to quantitatively study soil responses under any seismic excitation, one has to describe the 

spatio-temporal evolution of the incident seismic wave field so that a seismic source should be 

integrated in the model volume (e.g., Bouchon, 1979). This may be principally possible in any 

method; however, it is still extremely burdensome from a computational point of view, especially if 

the source-site distance is much longer than the scale of the studied site. Thus it is always worthwhile 

separating technically the different aspects of incident waves and local site responses, for which the 

mathematical and physical consistence is required (e.g. domain reduction methods, Bielak et al., 

1999; Yoshimura et al., 1999). Such a coupling can give the advantages such as a gain of time 

compared to the execution of the whole simulation, and a good assessment of site condition for the 

parameter study. 

 

In this study, we have two different methods. Finite Difference Methods (FDM) are often adopted for 

simulating the seismic wave propagation from an excited source in a large volume, mostly because the 

mathematical formulation and grid structure are handy and easy to implement for a parallel 

computing. Regardless of the inevitable numerical dispersion, they can provide a satisfying result at 

low frequency in a medium of relatively weak material heterogeneity. On the other hand, local site 

responses are often studied using Finite Element Methods (FEM), because of the necessity of treating 

a geometrically complex medium with possible non-linear and multiphase behaviour. This flexibility, 

in contrast, makes difficult to compute a large volume. The purpose of this paper is to make use of the 
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merits of such two methods and couple them reasonably in mathematical and physical frameworks. 

The coupling is carried via “paraxial elements” (or parabolic elements) implemented in the FEM. 

First we will show the theoretical description. Then this technique will be tested comparing to the 

results entirely simulated by the FDM. At last, some examples of local topography and local basin 

effects will be demonstrated. 

 

 

FORMULATION OF PARAXIAL APPROXIMATION 

 

In this section, we give the mathematical formulation of the paraxial approximation in the FEM code 

(GEFDYN), which has been developed for geomechanical applications since Modaressi (1987). 

 

History of the paraxial approximation 

The paraxial or parabolic approximation (or 15° approximation) was presented for the first time by 

(e.g. Claerbout, 1976) for scalar waves, then completed and studied in detail for elastic waves (e.g. 

Engquist and Majda, 1977; Clayton and Engquist, 1977). This approximation is useful for the 

computation in the transient domain and permits to build dynamic impedance, locally in space and in 

time, on the interface Σ (Figure 1). Cohen and Jennings (1983) proposed a numerical procedure of this 

approximation in the finite element methods. It should be noted that the domains Ωs’ and Ωs 

surrounding the interface  are supposed to be elastic whereas the domain Ωx could be inelastic (the 

paraxial approximation has also been developed for heterogeneous or nonlinear medium (Bamberger 

et al., 1986)). Basically, the paraxial approximation is used to absorb the outgoing waves, avoiding 

any artificial reflection on the interface; however, it is possible to use this approximation for both 

introducing physical signals for the inside Ωs and absorbing unnecessary outgoing waves from Ωs to 

Ωs’ via Σ (e.g. Modaressi, 1987; Aubert, 1997).  

 

 
Figure 1. Schematic illustration of the problem. Seismic waves are generated on earthquake 

faults in an elastic domain Ωs’. The volume of interest consists of an elastic domain Ωs and an 

(in)elastic domain Ωx, extracted along the interface .    

 

Definition of spectral impedance of the interface Σ 

The spectral impedance ̂  represents, in the Fourier domain, the action imposed by the exterior 

domain Ωs’ on the interior domain Ωs. In order to derive the paraxial approximation, the equation of 

motion in an elastic medium:  
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respect to the projected one of Eq (1), the solutions in the Fourier domain, 'û  and 
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the spectral impedance on the interface Σ : 
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Figure 2. Reference system. The coordinate ),','(
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eee is locally defined on the interface . 
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Paraxial approximation of the impedance 

The spectral impedance (Eq. 2) can be written in the physical domain through the Fourier inverse 

transform: 
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However, this integration cannot be evaluated theoretically. Engquist and Majda (1977) proposed to 

develop the wave numbers 
s

  and 
p

  in the functions of the ratio  : 
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The paraxial approximation is based on the assumption that   is small enough compared to the unity 

so that we can use only the lower orders of the following Taylor development: 
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The figure 3 illustrates the exact solution and the approximations. These approximations are correct 

when the norm of the wave vector 
'

 is small (i.e. the waves are propagating in a direction close 

to
3

e ). This will explain in the later demonstration how the domain shape  is important with respect 

to the location of seismic source (i.e. incident wave direction). 
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In this study, we use the zero-order paraxial approximation. It should be noted that the paraxial 

approximation of order one does not improve significantly the results and that high order 

approximations fetch up to instabilities (e.g. Clayton and Engquist, 1977). As a result, the spectral 

impedance, Eq. 2, will be simplified in the following:  
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and the spectral action, Eq. 3 will be written as 
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For the simplicity, Eq 7 is further written in the form   )(,0,'
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Variational formulation 

Across the interface  between Ωs’ and Ωs, the continuity of the displacement and of the stress vector 

is required:  
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Let us decompose the total field 
's

u on the interface  into an incident wave field 
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u  and a 

diffraction-radian field 
'r

u : 
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Supposing the neighborhood of the interface Σ homogenously linear and the diffraction-radian field 

'r
u ruled by the paraxial approximation, we can derive after Eqs 7, 8 and 9 the zero-order 

approximation: 
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This relation gives the evolution law of the stress vector on the interface Σ. A0 is the paraxial operator 

defined above that models approximately the stress vector within a medium where waves are 

propagating in one direction. For the purpose of the coupling, the stress field expressed by )(
'' is

u  

and the incoming wave velocity field )(
'0 it

uA   are required. By injecting the developed form of 
s

  

in the virtual work principle, we can derive the specific equation in our formulation: 
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VALIDATION OF THE COUPLING 

 

As a preliminary study, we have tested a plane incident wave and confirmed the validity of our 

coupling procedure. In this paper, another validation test (seismic wave propagation) is shown. 

 

Model setting 

In order to test our coupling procedure, we set up a semi-infinite homogenous elastic medium in 2D 

(Vs = 1500 m.s
-1

, Vp = 3200 m.s
-1

 and ρ = 2280 kg.m
-3 

 in all the domains Ωs’, Ωs and Ωx). Note that the 

domain Ωx does not exist practically but is included in the domain Ωs. A FDM with the 2
nd

 order 

staggered grid is used (Virieux and Madariaga, 1982) for modeling the seismic source in the domain 

Ωs’ and the radiated wave propagation to the domains Ωs and Ωx across  (Figure 4). The seismic 

source is characterized by giving a seismic moment tensor, namely, magnitude, fault’s orientation and 

slip direction, which is incorporated as a double couple force in the equation of motion. In Figure 4, 

fault orientation is taken to be 45° clockwise from the Y axis and fault slip is parallel to it. The source 

duration is assumed to be 0.02 seconds (=50Hz). As the FDM grids and the FEM nodes are not 

always situated at the same coordinates, a linear interpolation is adopted in the FDM code for each 

component of the velocity and the stress fields on the interface Σ (110 points on the curve in Figure 

4). For the simplicity and for avoiding unexpected scaling problem, the time step of the FDM is the 

same as the FEM (0.0002 second) and grid (element) spacing is 2 m, the same scale as the FEM. 

 

 
Figure 4. Snapshot of simulated wave propagation from a source to site using a finite difference 

method. The panel shows each component of velocity field. Black points represent the output 

points for the FEM simulation (110 points on the curve , and 9 points on the free surface for 



comparison). Seismic source is implemented at (x, y) = (20 m, -160 m) with the existence of the 

free ground surface at y=38 m. The P and S waves propagate from the source.  

 

Inside the domain Ωs, wave propagation is calculated in the FEM through the interface  (Figure 5). 

Now that the medium is elastic and homogeneous without any complexity on the whole domainsΩs’ 

and Ωs, the simulation results of wave propagation coupled in the FEM in the domain Ωs should give 

the identical results calculated directly by the FDM. In order to evaluate the quality of our approach, 

we compared the synthetic velocity on several points located on the free surface (See Figures 4 and 

5). Figure 5 shows in one hand the node’s numbers where the velocity computed by the FDM and by 

the FEM are compared and in other hand the mesh of the FEM. We plotted for each method the two 

component of the velocity at some location (Fig. 6).  

 

 
Figure 5. FEM mesh for calculating the domain Ωs. The node’s numbers are 1, 48 (not used), 

146, 387, 734, 1169 (not used), 1363, 1517 (not used) and 1585 from left to right, located on the 

free surface, corresponding to the black marks in Figure 4.  

 

Simulation result 

Figure 6 compares each component of the velocity at six stations illustrated in Figures 4 and 5. It is 

observed that the coupled simulation in the FEM gives the correct wave propagation (arrivals of the P 

and S waves and their phases and amplitudes). The oscillations appearing just after the arrival of the 

S-wave originate from the seismic source implementation in the FDM (the source duration is not 

enough long with respect to the grid spacing). However it is surprising that such a wave correctly 

propagates in the coupling simulation. In detail, some misfit, especially for the S wave appears 

slightly at nodes 1363 and 1585, which are far ends from the seismic source location. For such points 

(on the right hand side of the domain Ωs when the seismic waves arrives from the left hand side), the 

incident angle of the incoming wave becomes low on the interface . Thus the paraxial approximation 

may not work correctly enough.  

 

 
 

 
 



 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 



 
 

 
 

Figure 6. Comparison of synthetic velocity in each component at six points on the free surface (see 

Figures 4 and 5). No filter is applied on both the FEM and FDM simulations. 

 

After the passage of the body waves, spurious oscillations appear. This can be mainly due to the wave 

multi-reflection in the domain Ωs. The zero-order approximation we use in this study may not be able 

to absorb the wave perfectly. Nevertheless, the amplitude of these perturbations is small compared to 

the main wave (ratio 6%). Some improvement would be expected by using a higher order of the 

paraxial approximation. For practical uses, however, Figure 6 confirms that implemented paraxial 

elements behave like a transparent boundary good enough to couple the two domains for the wave 

propagation. 

 

 

APPLICATIONS FOR SITE EFFECT STUDY 

 

In order to show the example of the site effect study, we change the property of the medium in the 

domain Ωs.  Considering that such local heterogeneity should not affect the global wave propagation in 

the domain Ωs’, we are able to use the same incident waves on the interface geometry  without 

recalculating other configuration using the FDM. Thus we keep the same interface geometry Σ as well 

as the same linear elastic properties around the interface  (Vs, Vp and ρ). 

 

First Figure 7 shows the reference homogenous model (identical to the result shown in Figure 6). Six 

others local configurations are demonstrated from Figures 8 to 13. In Figure 8, 9 and 10, the effects of 

local topography with complex geometry are modeled and in Figures 11, 12 and 13 the basin effects 

are simulated by introducing the material heterogeneity. We do not aim at discussing quantitatively 

each simulation result in this paper. The objective of this paper is to show the potential capacity of 

such coupled simulations. 

 

 



  
Figure 7. Reference domain. Top: Model geometry and meshing. Bottom: Synthetic seismograms 

at each points along the free surface (x and y components, respectively). 

 

 

 

  
Figure 8. Effect of a hill smaller than the wavelength of the input wave 

 

 

 

  
Figure 9. Effect of a set of hills smaller than the wavelength of the input wave 

 



 

  
Figure 10. Effect of a hill larger than the wavelength of the input wave 

 

 

 

  
Figure 11. Site effect: the properties of the domain Ωx are Vs=750 m.s

-1
, Vp=1490 m.s

-1
 and ρ=2000 

kg.m
-3

. The shape of the domain Ωx is a half-circle with a diameter of 50 m 

 

 

 

  
Figure 12. Site effect: the properties of the domain Ωx are Vs=750 m.s

-1
, Vp=1490 m.s

-1
 and ρ=2000 

kg.m
-3

. The shape of the domain Ωx is a trapeze with a base of 50 m 



 

 

  
Figure 13. Site effect: the properties of the domain Ωx are Vs=750 m.s

-1
, Vp=1490 m.s

-1
 and ρ=2000 

kg.m
-3

. The shape of the domain Ωx is the bottom of a circle with a diameter of 150 m 

 

 

DISCUSSION 

 

Further works are ongoing in order to assess the sensitivity of the coupling by studying the influence 

of the coarseness of the finite difference method’s grid. It seems also important to evaluate the gain of 

accuracy obtained if the paraxial elements were used with an approximation of order one. Eventually, 

with the current development of the boreholes and by making some assumptions on the wave 

propagation, the paraxial approximation could be used to input natural seismograms on the interface Σ 

in order to test the accuracy of the finite element method to assess site effects on nonlinear soils. 

 

 

CONCLUSION 

 

This paper demonstrates the coupling simulation of seismic wave propagation from the FDM to the 

FEM. The coupling is carried out through the paraxial approximation developed in the FEM code. 

The main step of the theoretical formulation is first shown and then several examples are 

demonstrated. After the preliminary tests in a homogeneous elastic medium, it is found that such 

coupling works correctly and that we can handily get the expected results. It is proposed that this kind 

of coupling simulation is very useful for further local site effect, taking into account of the source and 

path effects. This will allow us to evaluate more quantitatively the local site effect for seismic hazard 

analysis. 
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