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[1] Using a previously defined framework, we performed a comparative sensitivity
analysis of four very different distributed erosion models (MHYDAS, STREAM, PESERA,
and MESALES). We investigated their sensitivities to input fluxes, hydrological submodels,
and specific erosion parameters gathered into equivalent slope and equivalent erodibility for
each model, thus allowing explicit comparisons between models. Tests involved multiple
combinations of rain intensities and runoff conditions for selected screenings of the
equivalent parameter space, resorting to one-at-a-time displacements and Latin hypercube
samples. Sensitivity to spatial distributions of erosion parameters was calculated as a
normalized index of numerical spread of soil loss results, obtained at the outlet of a nine-
cell virtual catchment endowed with a fixed flow pattern. Spatially homogeneous or
distributed parameterizations yielded responses of comparable magnitudes. Equivalent
erodibility was often the key parameter, while sensitivity trends depended on input fluxes
and the propensity of soils for runoff, affecting continuous and discrete models in clearly
dissimilar ways.
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1. Introduction
[2] Scenarios of climate change applied to the Mediter-

ranean ring indicate high and increasing erosion risk:
sparse vegetation, low structural stability, nonnegligible
slopes, and intense rainstorms render soils especially prone
to degradation and loss of fertility in northern Africa and
southern Europe. Do model parameterizations correctly
integrate these crucial elements, and what are the relative
influences of the dedicated parameters on predicted erosion
rates? Both problems may be tackled at once under the
heading of sensitivity analysis, debating here theoretical
aspects of erosion modeling through a cross-scale compari-
son of four very different models, following the framework
presented by Cheviron et al. [2010]. The models are used
for soil loss predictions at individually different spatial and
temporal scales, ranging across experimental sites, instru-
mented catchments, and entire regions.

[3] Very different concepts underlie models intended for
different scales, but the general trend is a progressively
more refined description when smaller spatial extensions
and time intervals are considered. In Distributed Hydro-
logical Modeling for Agrosystems (MHYDAS)-Erosion
[Gumiere et al., 2010] these dimensions are reduced to the

elementary size of the event: a single and spatially homoge-
neous rain falls on a small agricultural catchment. Physical
processes in detachment, transport, and deposition of par-
ticles are described with the level of detail allowed by the
preexisting MHYDAS hydrological model [Moussa et al.,
2002], where flow routing is computed from solutions of the
one-dimensional Saint-Venant equations [Moussa and
Bocquillon, 1996a, 1996b]. At intermediate spatial scales
and for a succession of rain events, the semiempirical Seal-
ing and Transfer by Runoff and Erosion Related to Agricul-
tural Management (STREAM) model [Cerdan et al., 2002a,
2002b] calculates water and sediment fluxes from surface
sealing, land cover, digital elevation models, and flowcharts
in agricultural catchments. It was built to work with a lim-
ited number of easily measured field parameters and
designed for land management purposes. At larger scales,
the Pan-European Soil Erosion Risk Assessment (PESERA)
model [Gobin et al., 2004; Kirkby et al., 2008] relies on
monthly statistical climatic data and integrates transient land
cover scenarios associated with cropping seasons. It belongs
to the ‘‘simplified physics-based’’ category of erosion mod-
els in the classification by Merritt et al. [2003]. For equally
large scales, the expert model Regional Modeling of Soil
Erosion Risk (MESALES) [Le Bissonnais et al., 2002] uses
a decision tree to combine values of crusting, slope, erodibil-
ity, land use, and rain inputs into discrete classes of erosion
risks. A conversion is then possible into continuous soil
losses values in tons per hectare and per year.

[4] Recent literature reviews [Knapen et al., 2007;
Gumiere et al., 2009] report a possible higher sensitivity of
erosion results to hydrological parameters than to specific ero-
sion parameters, although warning that studies are often con-
ducted under high rain intensities. Only a few hydrological
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conditions have been tested in studies of WEPP [Nearing
et al., 1990], LISEM [de Roo et al., 1996; Jetten et al.,
1998], EUROSEM [Veihe and Quinton, 2000], or PSEM-
2D [Nord and Esteves, 2005] in which these models all
identified a major influence of hydrological conditions on
erosion results. One may also remark that no formal
attempt has yet been made to discriminate between the
effects of hydrological conditions and specific erosion pa-
rameters on soil loss results while addressing the inaccur-
acy of in situ modeling [Jetten et al., 1999, 2003;
Boardman, 2006], criticizing the likelihood of model pre-
dictions [Brazier et al., 2000], or proposing solutions
[Jetten et al., 2005] to some of their major flaws.

[5] We present here a comparative sensitivity analysis of
four very different erosion models by means of the (P, R,
p) procedure exposed by Cheviron et al. [2010]. The proce-
dure starts from an intelligent sorting of the innate parame-
ters of each model into independent categories accounting
for precipitation (P), runoff conditions (R), and erosion
parameters (p), comprising ‘‘equivalent slope’’ (ps) and
‘‘equivalent erodibility’’ (pe). The resulting reduced param-
eterization (P, R, ps, pe) is common to all models being
studied, for all their structural differences, which is a cor-
nerstone of the present study and a novel idea with respect
to current practices in model analysis. The (P, R, p) bench-
mark is, indeed, adaptable to the widest variety of models.
It was intended for the typical situation where knowledge
of a given model is possessed by its users and decision
makers only need overviews of the specificities of several
candidate models.

[6] The analysis procedure is discriminating enough to
separate the sensitivity to hydrological factors from that to
erosion parameters: the relative influences of variations in
input fluxes, runoff conditions, topography (slope), and soil
properties (erodibility) may be estimated from deterministic
and explicit calculations. Sensitivity trends arise from a
series of scenarios involving selected variations in one or
more of the parameters as well as in spatial distributions of
the erosion parameters, which confers flexibility on the pro-
cedure and opens the way for ad hoc test designs. A case of
scientific interest is, for example, to identify the hydrologi-
cal conditions under which models are more sensitive to
spatial distributions of their erosion parameters. Policy plan-
ners, however, may be more concerned about the drift in
model predictions, with a progressive drift from best-case to
worst-case scenarios, including strong rain and runoff, steep
slopes, and high erodibility. Both questions are addressed in
the present study, as illustrations of the more diverse results
obtainable from this novel model analysis procedure.

2. Materials and Methods
2.1. Models

2.1.1. MHYDAS
[7] MHYDAS is a runoff-rainfall model developed to

study the effects of agricultural management on the hydro-
logical behavior of a farmed catchment during rain events
[Moussa et al., 2002]. It relies on the one-dimensional
description of flow routing in connected reach segments by
means of the diffusive wave approximation of the Saint-
Venant equations, as solved by Moussa and Bocquillon
[1996a, 1996b]. The MHYDAS-Erosion module was added

recently to the OpenFluid development platform (Labora-
toire d’études des Interactions Sol-Agrosystème-Hydrosy-
tème (LISAH) Montpellier, France, 2010, available at http://
www.umr-lisah.fr/openfluid). MHYDAS-Erosion is a small-
scale physics-based model with dedicated parameter sets for
concentrated and diffuse erosion processes, with the former
located in rills and the latter on interrills. This event-based
model was intended for small Mediterranean catchments, as
indicated by its typology and parameterization, where the
number of rills and plot length (or streamwise distance) are
key parameters. Sensitivity tests on MHYDAS were auto-
mated as indicated by Cheviron et al. [2010] thanks to a
resolution scheme centered on the SENSAN software
[Doherty, 2004].
2.1.2. STREAM

[8] STREAM was developed to account for the respective
effects of slope and tillage directions on runoff [Souchere
et al., 1998]. It grew into an event-based spatially distributed
erosion model [Cerdan et al., 2002a, 2002b] with empirical
inputs in the determination of its few innate parameters. It
was conceived for agricultural management purposes, and
its parameterization is based directly on field observations.
Whereas MHYDAS-Erosion updates erosion calculations at
each time step, STREAM yields cumulative results for con-
centrated and diffuse erosion over the entire duration of an
event. The model has been recently described and success-
fully tested by Evrard et al. [2009] in three completely dif-
ferent contexts (northern France, Belgium, and southern
France). Automation of tests performed on STREAM was
made in an ad hoc procedure: models relying on geographi-
cal information systems with input and output files as work-
sheets would not fit in a resolution scheme commanded by
SENSAN, which needs ASCII files to interact with models.
2.1.3. PESERA

[9] PESERA is a coarse-scale model [Gobin et al., 2004;
Kirkby et al., 2008], intended for erosion risk assessment
across Europe, relying on a refined meteorological submodel
and on simplified physics-based equations for erosion. It
was designed to estimate long-term average erosion rates in
replacement of the universal soil loss equation, which is less
suitable for European than for North American conditions
and is not compatible with higher-resolution data. An evalu-
ation of PESERA by Licciardello et al. [2009] in contrasting
contexts revealed that variability between the investigated
land uses and climate conditions was well captured, whereas
absolute erosion rates were strongly underestimated. Soil
erodibility was identified as a key parameter, confirmed by
preliminary sensitivity tests conducted on each parameter of
each model for the present study. Because the heart of
PESERA is a series of three small executable files, the
model could be run without difficulty within the intended re-
solution scheme.
2.1.4. MESALES

[10] MESALES [Le Bissonnais et al., 2002] was devel-
oped to assess soil erosion risk at the national and European
scale. It is one of the thematic applications based on the
Soil Geographical Database of Europe. MESALES uses
expert-defined rules to combine factors influencing erosion,
with strong influences of land cover and crust formation
onto results expressed in five classes of erosion risks. Rely-
ing on a geographical information system, MESALES could
not be automated and was run manually.
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2.2. Sensitivity Analysis Procedure

2.2.1. Mathematics and Strategy
[11] The present study is an application of the determin-

istic framework discussed by Cheviron et al. [2010] that
relies on a series of selected scenarios in model exploration.
These scenarios apply to models whose parameterizations
have previously been reduced to a common description
involving precipitation P as input fluxes, runoff conditions
R as the propensity of soil for surface flows, equivalent
slope ps accounting for all topographical entries, and equiv-
alent erodibility pe indicating how soils are prone to ero-
sion. The parameter space therefore has four dimensions: a
point in parameter space is localized by its four coordinates
(P, R, ps, pe). Associated model responses M(P, R, ps, pe)
are ‘‘multilocal’’ quantities, i.e., quantities defined at multi-
ple points corresponding to the tested combinations of (P,
R, ps, pe) parameter values.

[12] Scenarios in model exploration are simply user-
defined screenings of the parameter space, along trajecto-
ries and according to strategies constrained by the objec-
tives attributed to the (P, R, p) procedure. The first and
global objective is a comparative overview of responses
and sensitivity of the models over their entire parametric
ranges. The second objective is to identify how sensitivity
to equivalent slope and erodibility (ps, pe) evolves under
increasing (P, R) hydrological conditions.

[13] For simplicity, let X be a point in parameter space
and M(X) be the model response. Any screening is a suc-
cession of �X increments along a selected trajectory involv-
ing variations in one or more of the parameters. Sensitivity
is expressed as the associated G�X ðX Þ ¼ �M variation. It is
termed ‘‘sensitivity at X in the direction of �X ’’ and has the
useful advantage of being a scalar value obtained from a
vectorial displacement in parameter space. The underlying
concept and calculation device is that of the Gâteaux direc-
tional derivatives [Gâteaux, 1913], which pertain to analy-
sis of nonlinear discrete systems [Cacuci, 1981, 2003] with
variational methods [Castaings, 2007; Castaings et al.,
2007].

[14] This central mathematical argument makes the (P, R,
p) procedure a simplified variational method in a formulation
adapted to erosion models, considering a specific reduced
parameterization and defining model response as the sim-
plest possible output, i.e., cumulative (time-independent) soil
loss. This strategy was chosen to erase structural differences
between models and to place them on the same starting line
before analysis, but the (P, R, p) procedure could easily be
modified to analyze multiple time-dependent outputs or to
explicitly target the control exerted by boundary and initial
conditions over the results, in a strategy close to data assimi-
lation purposes. It could also handle distinct parameters for
concentrated and diffuse erosion processes, if all models
being tested had a sufficient level of detail.
2.2.2. Virtual Catchment

[15] In the (P, R, p) procedure, the virtual catchment is the
topographical entity on which soil loss and sensitivity calcu-
lations are performed. Its features are shown in Figure 1. Its
topology is fixed. Flow paths remain unaffected by the driv-
ing rain conditions and are the only connectivity lines
between cells in the catchment, with respect to hydrological
and sedimentological processes. If not linked by a flow line,

two adjacent cells have no interactions. For simplicity, all
cells are arbitrarily represented by squares, but their length
and width may vary if distance to the drainage line or stream-
wise distance has to be tested as a requirement of a given
model. Conversely, the surface area of the elements must be
kept constant and in accordance with the nominal spatial
scale of models. The advantages and drawbacks of this virtual
catchment have been discussed by Cheviron et al. [2010],
with the concluding argument that enough diversity was pres-
ent in this rather simple design to detect the major representa-
tive differences between models, at least those targeted by
the intelligent (nonexhaustive) deterministic procedure.
2.2.3. Spatialization of the Parameters

[16] Only spatially homogeneous values of the hydrolog-
ical factors accounting for precipitation P and runoff condi-
tions R were considered here, to facilitate interpretation.
Focusing on the role played by erosion parameters, both
spatially homogeneous and spatially distributed configura-
tions of the p parameters were tested. Preliminary attempts
with spatial distributions in all categories at once were dis-
carded as they created too much equifinality in cumulative
soil loss results. They are, nevertheless, useful when intend-
ing a temporal or cell-by-cell analysis, providing more diver-
sity in the situations with far less redundancy.

[17] In spatially homogeneous A configurations, a tested
parameter has the same value in all cells, but a progressive
gradation of values between simulations is considered. If,
for example, three values (p1, p2, p3) are involved, they
are previously sorted with regard to soil loss results, so that
p1 has the lowest contribution (or efficiency), p2 the me-
dian one, and p3 the highest one. When designing spatially
distributed B configurations, a limited number of contrasted
configurations was chosen, in terms of spatial distributions
and parameter values involved, as can be seen in Figure 2.
B configurations consist of patches of cells of low, median,
and high efficiency superimposed on the flowchart. Model
responses read M(P, R, Bs, pe), M(P, R, ps, Be), or M(P, R,
Bs, Be) for spatially distributed slopes, erodibilities, or both,
respectively.

Figure 1. Layout and connectivity in the virtual catch-
ment between surface units numbered 1 to 9. The one-way
downstream hydrological and sedimentological connectiv-
ity is indicated by flow lines numbered F1 to F5.
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2.2.4. Equivalent Parameters
[18] Besides common patterns for topography, topology,

and spatial distributions of the (P, R, p) entries, a reliable
comparison between models requires definition and coding
of equivalent (P, R, p) entries. As units for (P, R, p) values
differ between models, no straightforward numerical com-

parison could be planned. For each model, the coverage of
the entire nominal range of each P, R, and p axis involved
unit increments : values of dissimilar nature were converted
into comparable nondimensional entries represented by
integers (Figure 3).

[19] For both the A and B configurations, tests on MHY-
DAS involved 5 P, 5 R, 11 ps, and 11 pe values. Precipita-
tion intensities were P1 ¼ 20, P2 ¼ 35, P3 ¼ 50, P4 ¼ 65,
and P5 ¼ 80 mm h�1. Runoff conditions were formed by
ðKs; �iÞ combinations of saturated hydraulic conductivity
Ks and initial surface water content �i values, from R1,
given as Ks ¼ 37 mm h�1; �i ¼ 0:02

� �
, to R5, given as

Ks ¼ 0:1 mm h�1; �i ¼ 0:40
� �

, in increasing efficiency
order. Slope values were taken between 1% for the least and
30% for the most productive condition. The efficiency of
the group of parameters constituting the equivalent erodibil-
ity was influenced by parameters accounting for the number
of rills, interrill erodibility, cohesion in rills, and rill rugos-
ity for low to median (P, R) conditions, then controlled
overall (with exponential effects) by parameters accounting
for the number of rills and plot length (streamwise distance)
for high (P, R) conditions.

[20] Tests on STREAM involved five P and three R val-
ues. Precipitation intensities were chosen to match those
tested for MHYDAS. Increasing R conditions were obtained
from pairs of increasing antecedent rain values and classes
of sensitivity to runoff. Equivalent slope values from 1% to
30% were simulated in the digital elevation model required
by STREAM, but only ps values corresponding to 1%, 3%,
10%, and 30% were tested in A configurations. Five out of
the possible 11 values of pe were tested in A configurations,

Figure 2. Spatially distributed B configurations. Light,
medium, and dark gray cells receive values of erosion pa-
rameters associated with low, median, and high efficiency
with respect to soil loss, respectively.

Figure 3. Innate entries of each model chosen for definition of (a) equivalent control hydrological con-
ditions and (b) equivalent ‘‘descriptive’’ parameters of slope and erodibility. Slope appears as such in the
innate parameterization of MHYDAS, as does erodibility in MESALES.
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with none of the constitutive elements of equivalent erodi-
bility showing a dominating influence.

[21] Tests on PESERA involved six P values, but only five
appear in the presentation of the results, corresponding to pre-
cipitation intensities of 35, 55, 75, 95, and 115 mm month�1.
In its meteorological parameterization, PESERA also
includes a number of rainy days per month and a coefficient
of rainfall variation that accounts for fluctuation in intensity
of the precipitation, but the influences of these parameters
were found to be of secondary order: they were kept at
their recommended default values. Annual sine temperature
variations were treated the same way. Increasing runoff
conditions were thought of as combinations of decreasing
percentage of vegetal cover with increasing soil crusting
values, yielding five R values. The least efficient condition
has 100% surface cover and 1 mm crusting; the most effi-
cient has bare soil with 5 mm crusting. Eleven equivalent
slopes from 1% to 30% were produced, resorting to the
same strategy as for STREAM, feeding PESERA with the
adequate relief index required. Equivalent erodibility was
strongly conditioned by the innate erodibility parameter:
parameters accounting for soil texture and rooting depth
played secondary, though nonnegligible, roles, with a no-
ticeable effect confined in low (P, R) conditions.

[22] MESALES was tested under five classes of increas-
ing precipitation intensities. The difficulty was to find three
unambiguously increasing runoff conditions. The only way
to perform a (P, R, p) analysis of MESALES and to ensure
comparison with other models was to define runoff condi-
tions as the combination of a given land use and a given
crusting value, but the former function raised serious
issues. We had to choose very contrasted land uses to cre-
ate a progression between R values, which required testing
almost all nine land use classes listed in MESALES before
choosing three of them. R1 was finally defined as forest
with class 1 crusting, R2 as vineyards with class 3 crusting,
and R3 as arable land with class 5 crusting. The same strat-
egy as for STREAM and PESERA was used to simulate the
intended slopes from digital elevation model requirements.
Erodibility and equivalent erodibility are strictly identical
in MESALES.
2.2.5. Screenings

[23] Figure 4a shows explorations of the (ps, pe) plane
when dealing with A configurations. Four trajectories are fol-
lowed, involving one-at-a-time (OAT) or Latin hypercube
(LH) displacements, indicated by small solid and large open
circles, respectively. Along the vertical sequence of solid
circles, increasingly efficient configurations of the equiva-
lent erodibility are tested, whereas equivalent slope is held
at its median value in all cells, which is denoted OATðpeÞ.
Roles are exchanged when considering the horizontal
sequence of solid circles, indicated as OATðpsÞ. Along the
first diagonal, simultaneously increasing values of ps and pe

are tested, denoted LHðps; peÞ. Along the second diagonal,
ps is increased while pe is decreased. Such a representation
holds for given (P, R) conditions.

[24] The vertical sequence of solid circles in Figure 4b
indicates tests performed with spatially distributed Be con-
figurations while ps is held at its median value in all cells.
As soil loss results are sorted by increasingly efficient Be

configurations, the test is denoted OATðBeÞ. The same
applies for the horizontal sequence OATðBsÞ of solid

circles when exchanging roles. These sequences were
placed perpendicular to one other to facilitate representa-
tion of the results, even if the center of the diagram a priori
bears two different soil loss values: (ps ¼ 6, Be ¼ 6) and
(Bs ¼ 6, pe ¼6). This artifact is evaluated later to compare
the effects of distributions in equivalent slope and equiva-
lent erodibility.

[25] Figure 4c goes one step further in analyzing the
influence of spatial distributions of the equivalent parame-
ters. The vertical sequence of solid circles corresponds to
the test of spatial distributions Be while Bs is held at its
median-efficiency distributed configuration. Configurations
are again sorted by increasing efficiency, along the OATðB�eÞ
direction. The same applies for the horizontal sequence
OATðB�s Þ of solid circles when exchanging roles. The
OATðB�s ; B�eÞ test involves increasingly efficient spatial dis-
tributions Bs and Be. In cases where soil loss results were not
monotonically increasing along the first diagonal, they were
resorted to fulfill this requirement. The ‘‘improper’’ graphi-
cal representation proposed in Figure 4b was also used in
Figure 4c to compare the magnitude of soil loss values
obtained in the three different directions of OAT and
LH tests.
2.2.6. Sensitivity Indices

[26] If soil loss values M(P, R, ps, pe) ¼ M(X) are placed
on the OAT and LH nodes of the grid, as indicated in

Figure 4. Screening stages and strategies, involving tests
on the equivalent slope ps and equivalent erodibility pe in
(a) spatially homogeneous or (b, c) distributed configura-
tions, where equivalent parameters are denoted Bs and Be,
respectively. One-at-a-time (OAT) and Latin hypercube
(LH) explorations are assembled into sensitivity maps.
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Figure 4a, then selected displacements OATðpsÞ, OATðpeÞ,
or LHðps; peÞ result in �M variations unambiguously asso-
ciated with sensitivities G�psðX Þ, G�peðX Þ, and G�psþ�peðX Þ,
respectively. In simplified notation, these sensitivities are
all of the Gp type. Accordingly, Gp and GR are sensitivities
to variations in P and R conditions.

[27] Besides these multilocal values, a complementary
sensitivity information is the dispersion SA of the soil loss
results associated with screenings described in Figure 4a,
depending on the (P, R) conditions. When performing the
OATðpsÞ test, this normalized dispersion is

SAðsÞ ¼ MðP; R; pþs ; pm
e Þ �MðP; R; p�s ; pm

e Þ
MðP; R; pm

s ; pm
e Þ

; ð1Þ

where superscripts plus, m, and minus indicate values asso-
ciated with maximum, median, and minimum efficiency
with respect to soil loss. SAðeÞ is defined in a similar way
to OATðpeÞ. The dispersion associated with LHðps; peÞ in
Figure 4(a) is

SAðs; eÞ ¼ MðP; R; pþs ; pþe Þ �MðP; R; p�s ; p�e Þ
MðP; R; pm

s ; pm
e Þ

: ð2Þ

[28] Dispersion values may also be calculated from dis-
placements shown in Figure 4(b), measuring the sensitivity
to individual spatial distributions Bs or Be. In the former
case, SBðsÞ is obtained from OATðBsÞ and is defined as the
normalized spread:

SBðsÞ ¼ MðP; R; Bþs ; pm
e Þ �MðP; R; B�s ; pm

e Þ
MðP; R; pm

s ; pm
e Þ

: ð3Þ

[29] The last sensitivity measure is obtained from dis-
placements in Figure 4c and indicates the effects of com-
bined spatial distributions Bs and Be. For example, OATðB�s Þ
results in the SB�ðsÞ dispersion:

SB�ðsÞ ¼ MðP; R; Bþs ; Bm
e Þ �MðP; R; B�s ; Bm

e Þ
MðP; R; pm

s ; pm
e Þ

: ð4Þ

[30] Together with selected representations of model
results M, three multilocal quantities (Gp, GP, and GR) and
three measures of dispersion ðSA; SB; and SB�Þ are there-
fore used in this study to evaluate sensitivity trends
obtained from screenings involving ps, pe, Bs, and Be, per-
formed under varied (P, R) conditions.

3. Results and Discussion
3.1. Spatially Homogeneous Configurations

3.1.1. MHYDAS
[31] Throughout this study, the M(P, R, ps, pe) formula-

tion of model response involves five quantities. The problem
has, therefore, five dimensions, but only a planar representa-
tion allows plotting sufficiently detailed and clear informa-
tion, with the arguments of M on the X ordinate and M
values on the Y ordinate. Figure 5a exemplifies this graphical

Figure 5. Dashboards representing soil loss and sensitivity results for (a, c) MHYDAS and (b, d)
STREAM under all combinations of precipitation P and runoff conditions R for OAT and LH screenings
involving spatially homogeneous values of the equivalent slope ps and/or erodibility pe.
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facility: M values obtained from OATðpsÞ, OATðpeÞ, and
LHðps; peÞ in Figure 4a are shown for all combined (P, R)
conditions. A dashboard is constituted by placing Figure 5c
under Figure 5a, so that soil loss results and the associated
sensitivities belong to the same column spanning both plots.
In Figure 5c, Gp indicates the variation in soil loss caused by
a unit increment in ps for the OATðpsÞ screening, in pe for
the OATðpeÞ screening, or in psand pe simultaneously for
the LHðps; peÞ screening. GP and GR are the variations
caused by unit increments in P and R, respectively.

[32] Soil loss results in Figure 5a show a wide dispersion
over several orders of magnitude, with much more sensitiv-
ity to pe than to ps. LH tests indicate an even wider spread
of values. Values are driven to near zero by the influence of
low slopes, then stretched up to high values under exponen-
tial influences of factors taking part in the definition of
equivalent erodibility, previously cited as the number of rills
and streamwise distance. In Figure 5c, values of the deriva-
tives are of almost the same order of magnitude as soil loss
results, indicating a very dynamic response of the model.
The global trend in Gp curves indicates an increase in sensi-
tivity for increasing (P, R) conditions. The Gp curves indi-
cate a maximum sensitivity to P for middle-range (P, R)
conditions, corresponding to the typical nominal range of
the model. A plausible explanation is that such (P, R)
regimes are critical water excess conditions under which
diffuse erosion dominates (high GP and GR values) and over
which linear erosion is triggered, progressively taking over
(lowering GP and GR values). For very high water excess
conditions, diffuse erosion provides a negligible contribu-
tion so that the model output is not significantly sensitive to
increases in P or R.
3.1.2. STREAM

[33] Figure 5b shows that LHðps; peÞ screenings for
STREAM were limited to (P2, R1), (P3, R2), and (P5, R3)
conditions. Because of the presence of only three R condi-
tions, one easily observes the intersection between curves in
the dotted columns, corresponding to the central point of the
diagram in Figure 4a. In these small so-called ‘‘spider dia-
grams,’’ soil loss values are far less dispersed than for MHY-
DAS, though exhibiting comparable orders of magnitude.
STREAM has a less dynamic response but also exhibits a
stronger sensitivity to pe than to ps, with magnified but not
so spectacular effects associated with LHðps; peÞ screen-
ings. The order of magnitude of the derivatives in Figure 5d
is inferior to that of the soil loss results, with some specific
exceptions: values of Gp, GP, and GR associated with the
OATðpeÞ screening become high for high (P, R) conditions,
which possibly indicates the beginning of an exponential
behavior and requires tests in a wider range of values. Other
noticeable features are high values of GP and GR corre-
sponding to the appearance of nonzero responses for low
to medium (P, R) conditions. In particular, the curves for
(P2, R1) in Figure 5b probably signal the threshold between
influences of diffuse and linear erosion, though less clearly
than for MHYDAS.
3.1.3. PESERA

[34] Figures 6a and 6c show very smooth soil loss and
sensitivity results over several orders of magnitude, with
steeper response curves for LH screenings and OAT tests
on equivalent erodibility than for OAT tests on equivalent
slope. PESERA has slightly more sensitivity to R than to P,

but both have significant influences on the results, though
variations in pe remain the dominant factor. Unlike in
MHYDAS, no distinction is made between diffuse and lin-
ear erosion processes, which explains why no threshold
appears on PESERA curves for increasing (P, R) condi-
tions. As for MHYDAS, values of the derivatives in Figure
6c are high compared to soil loss values. Gp increases with
increasing P, R, and p values, accelerating into a seemingly
exponential behavior for the highest (P, R) conditions. A
possible explanation may be found in the physics-based
and continuous model rationale, not including any cutoff or
stabilization procedure more likely to be integrated in dis-
crete models. In contrast, curves for GP and GR quickly
reach a stable and autoreproduced pattern for median then
high (P, R) conditions. Note that the sixth P condition
tested for PESERA (P ¼ 135 mm h�1) was used to trace
the rightmost part of the GP curve, tracing sensitivity to a
unit increment from the fifth to the sixth P value.
3.1.4. MESALES

[35] To allow for comparisons with other models, the
five classes or erosion risks predicted by MESALES have
been converted into soil loss values of 0.5, 2, 6.5, 20, and
50 t ha�1 yr�1, respectively. As for PESERA, soil loss
results were obtained cell by cell, as the flow pattern
imposed in Figure 1 was not compatible with the require-
ments of these models, which do not include connectivity
between cells. For these models, soil loss values presented
here are averages over the nine-cell catchment.

[36] Figure 6b indicates that only LHðps; peÞ screenings
were performed under P2 and P4 conditions, keeping with
the general trend of an expected increase of soil loss values
with increasing P conditions. In Figure 6d, model deriva-
tives Gp and GR have higher absolute values than GP. They
become very significant in high (P, R) conditions, identify-
ing the progressively more dynamic behavior of the model.
3.1.5. Sensitivity Maps

[37] Figure 7 presents ‘‘sensitivity maps’’ that focus on
the relative importance of equivalent slope (ps) and equiva-
lent erodibility (pe) for each model, under three increasing
(P, R) water excess conditions. This graphical facility relies
on all screenings depicted in Figure 4a, including the sec-
ond diagonal, but involves only selected (P, R) combina-
tions, which offers complementary information to that
contained in the model dashboards.

[38] The orientation of isovalues indicates similar sensi-
tivity trends for MHYDAS, STREAM, and PESERA. In the
(ps, pe) plane, a displacement along the X ordinate induces
less change in soil loss values than a displacement of the
same magnitude along the Y ordinate: variations in equiva-
lent erodibility have more pronounced effects. The effects
of combined variations are stronger, however, stretching
values along the first diagonal, from the lower left to the
upper right of each plot, on the line between best-case and
worst-case scenarios. MHYDAS and PESERA exhibit very
dynamic, if not exponential, behavior along such trajecto-
ries, especially in high water excess conditions. Figures 7a
and 7b for MHYDAS reveal slight anomalies for median to
low slopes, high equivalent erodibilities, and limited water
excess conditions. For MESALES, erodibility and equiva-
lent slope show comparable importances, but Figure 7l is an
exception: equivalent slope regains a first-order influence
under high precipitation values.
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3.2. Spatially Distributed Configurations

3.2.1. MHYDAS
[39] Comparing soil loss values obtained from screen-

ings depicted in Figure 4b, Figure 8a shows greater disper-
sion of the results associated with OATðBeÞ. The OATðBsÞ
screening yields predicted values inferior by at least one
order of magnitude. Although obvious, these discrepancies
remain somewhat weaker than those in Figure 5a. The
expected increase in soil loss results with increasing R val-
ues is very limited when testing Be configurations and
becomes even untrue when testing Bs. In MHYDAS, for
fixed P and median pe values, i.e., for a given amount of
available water and for known soil characteristics, changes
in R and Bs both affect flow routing algorithms, which
leaves the possibility for variations in Bs to overcompensate
for the increase in spatially homogeneous R conditions.
This scenario is very plausible, as the most efficient Bs con-
figurations were found to vary with R. In contrast, the most
productive patterns for Be are B2, B10, B8, and B7, for all
(P, R) conditions and for median ps values. Figure 8c
plots normalized dispersion values SBðsÞ and SBðeÞ calcu-
lated from equation (3), as well as their variations GPðSBÞ
and GRðSBÞ for unit increments in P and R, respectively.
Except for low water excess conditions, SBðsÞ remains close
to unity, indicating no significant effect of the Bs

distributions, whereas SBðeÞ is about 100: calculated
soil losses vary between 0 and 100 times the reference value
when testing Be. An asymptotic regime seems to be reached

when advancing toward the right of Figure 8c, as SBðeÞ sta-
bilizes while its derivatives progressively tend to zero.
3.2.2. STREAM

[40] The very stable and bounded soil loss results for
STREAM in Figure 8b resemble these of Figure 5b, with
even less dispersion and fewer discrepancies between
curves. Depending on the (P, R) conditions, the most pro-
ductive configurations were B1 or B2 for Bs and B9 or B2
for Be. Soil loss values are comparable with those predicted
by MHYDAS when considering the OATðBsÞ screening,
but they are about one order of magnitude lower than with
OATðBeÞ. Values of SBðeÞ for STREAM are negligible
compared to those of MHYDAS, except for the low water
excess conditions on the left of Figure 5d, corresponding to
the appearance of nonzero predicted soil losses.
3.2.3. PESERA

[41] Figure 9a shows soil loss results obtained for
PESERA from OATðBsÞ and OATðBeÞ screenings in Fig-
ure 4b. A striking feature of Figure 9a is the organization
of model results into steps of values for any given (P, R)
combination. More detailed representations would, indeed,
show six discrete levels of values inside each dotted col-
umn, as equal results are obtained from six subfamilies of
B configurations, namely, B11, B1, B6 and B7, B2– B5,
B10, and B8 and B9, in increasing efficiency order for Be.
This order is almost the same for Be, except that B1 comes
before B11. These discrete levels are a consequence of the
fact that the imposed flowchart is not relevant and not taken

Figure 6. Dashboards representing soil loss and sensitivity results for (a, c) PESERA and (b, d)
MESALES under all combinations of precipitation P and runoff conditions R for OAT and LH screen-
ings involving spatially homogeneous values of the equivalent slope ps and/or erodibility pe.

W01510 CHEVIRON ET AL.: COMPARATIVE SENSITIVITY ANALYSIS W01510

8 of 15



Figure 7. Sensitivity maps for (a – c) MHYDAS, (d – f) STREAM, (g – i) PESERA, and (j– l)
MESALES in spatially homogeneous configurations. Precipitation and runoff conditions increase from
left to right for each model, except for MESALES, which is mapped in a median runoff condition but for
increasing precipitation. Soil loss isovalues are in t ha�1 event �1 for MHYDAS and STREAM and in
t ha�1 yr�1 for PESERA and MESALES.
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into account by the model: soil loss values depend only on
the cell values of the equivalent parameters, not on the con-
nectivity between cells. For PESERA, a rule of thumb is
that configurations involving the same number of ‘‘high’’
values in Figure 2, for all their patterns, yield approxi-
mately the same soil losses.

[42] The order of magnitude of soil loss results obtained
in spatially distributed configurations (Figure 9a) is some-
what inferior to that obtained from spatially homogeneous
settings (Figure 6a), whereas about the same difference
exists in relative extension of results associated with
OATðBsÞ and OATðBeÞ, to the advantage of the latter. Fig-
ure 9c reports clear trends in terms of dispersion of the
results. SBðsÞ has a constant value of 2, and SBðeÞ decreases
with increasing R conditions, i.e., with reduced percentage
of vegetal cover and increased crusting. Moreover, this
decrease tends to be more remarkable for higher values of P.
Values of SBðeÞ range between 20 and 40, which is nonne-
gligible before calculated soil losses.
3.2.4. MESALES

[43] MESALES shows very comparable features in
terms of magnitude of soil loss results (Figure 9b) and sen-
sitivity trends (Figure 9d) for spatially distributed or spa-
tially homogeneous settings (Figures 6b and 6d). The
progression in numerical values is even smoother as a func-
tion of P and R conditions than it was in Figure 6b. With
the same explanation as for PESERA, one observes discrete
levels of values inside the dotted columns. Configurations
B1 and B3 are the least efficient of the Bs series, the most

efficient ones being B6 and B9. With respect to Be, the least
efficient ones are B1 and B7, and the most efficient are B10
and B5. The values of SBðsÞ remain weak, but those of
SBðeÞ become nonnegligible under strong P values and
median R values, which corresponded to changes in land
use for moderately contributing land uses.
3.2.5. Sensitivity Maps

[44] Sensitivity maps obtained from tests involving spa-
tially distributed configurations are shown in Figure 10 and
are organized as in Figure 7. These maps were plotted from
screenings described in Figure 4b for STREAM and in
Figure 4c for MHYDAS, PESERA, and MESALES. As (P,
R) conditions strengthen, MHYDAS (Figures 10a–10c)
evolves from a situation where equivalent erodibility domi-
nates to a situation where combined spatially distributed
effects gain more importance. A comparable behavior is sus-
pected for STREAM (Figures 10d–10f) but could not be
proven. For PESERA (Figures 10g–10i), soil loss values are
stretched along the diagonal, indicating dominant combined
effects for all the (P, R) conditions considered. The results
shown for MESALES (Figures 10j–10l) were obtained for
increasing P conditions combined with a constant R condi-
tion, corresponding to arable lands with median crusting.
The maps are first dominated by equivalent slope effects
(Figure 10j), then by both equivalent erodibility and equiva-
lent slope (Figure 10k), with combined distributed values
resulting in second-order effects (Figure 10l), which requires
further investigation or reveals the limitations of the graphi-
cal facilities chosen in Figure 4c.

Figure 8. Dashboards representing soil loss, dispersion SB, and variations in SB for (a, c) MHYDAS
and (b, d) STREAM under all combinations of precipitation P and runoff conditions R for OAT screen-
ings (Figure 4b) involving spatial distributions of the equivalent slope Bs or erodibility Be.
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3.3. Comparative Sensitivity Results

3.3.1. Dispersion for Spatially Homogeneous
Configurations

[45] Normalized dispersions associated with screenings
described in Figure 4a have been calculated by means of
equation (1) and are given in Table 1 for selected (P, R) con-
ditions. For clarity, a normalized dispersion of 1.0 in Table 1
indicates that the raw dispersion of values is equal to the ref-
erence soil loss value, which is, for example, the case for
raw values ranging between 0.5 and 1.5 times the reference
value. A normalized dispersion of 10.0 therefore indicates
that response values largely exceed the reference value.

[46] Table 1 exhibits similarities between MHYDAS and
PESERA, associated with strong dispersion indices,
whereas STREAM and MESALES show results more con-
fined near reference values. For all models but MESALES,
SAðeÞ is higher than SAðsÞ, and Table 1 adds numerical in-
formation to the observations already made that models are
more sensitive to pe than to ps. SAðsÞ is about one third of
SAðeÞ for STREAM, one tenth for PESERA, and one thirti-
eth for MHYDAS. SAðs; eÞ values associated with LH tests
are stronger for the continuous models (MHYDAS and
PESERA) than for the discrete ones (STREAM and
MESALES), which emphasizes the difference between
multiplicative and additive (or disconnected) sensitivity
trends attributable to differences in model structures. Miss-
ing values in Table 1 correspond to zero soil loss results for
MHYDAS and to unperformed calculations for STREAM.

Occasional zero values found for MESALES simply indi-
cate no dispersion: some soil loss results were constant
during OAT tests for which no change in predicted erosion
risk classes was observed.
3.3.2. Dispersion for Spatially Distributed
Configurations

[47] Table 2 shows relative dispersion ratios SB=A ¼
SB=SA formed from equations (1) – (3) and used to com-
pare the spreads of soil loss results obtained from screen-
ings depicted in Figures 4b and 4a. Values less than unity
for STREAM and PESERA indicate poor sensitivities to
the tested spatial distributions of ps and pe. In contrast,
MESALES shows relative dispersions ranging from 0.0 to
15.2, mainly variable with the R condition. Tests on spatial
patterns of erodibility induce stronger variations than tests
on spatial patterns of equivalent slopes, especially in the
median R condition: the typical Mediterranean ‘‘vineyards
with median crusting’’ condition is associated with the very
dynamic model response already noticed. For MHYDAS,
SB=A values are systematically greater than SA values,
which signals a high ‘‘multiplicative’’ sensitivity to the spa-
tial distributions of ps and pe.
3.3.3. Dispersion From Higher-Order Effects

[48] Table 3 shows relative dispersion ratios SB�=B ¼
SB�=SB, formed from equations (3) and (4), and SB�=A ¼
SB�=SA, formed from equations (1), (2), and (4), to com-
pare the spreads of soil loss results obtained from screen-
ings depicted in Figures 4c, 4b, and 4a. For example,

Figure 9. Dashboards representing soil loss, dispersion SB, and variations in SB for (a, c) PESERA
and (b, d) MESALES under all combinations of precipitation P and runoff conditions R for OAT screen-
ings (Figure 4b) involving spatial distributions of the equivalent slope Bs or erodibility Be.
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Figure 10. Sensitivity maps for (a –c) MHYDAS, (d – f) STREAM, (g – i) PESERA, and (j– l)
MESALES in spatially distributed configurations. Precipitation and runoff conditions increase from left
to right for each model, except for MESALES, which is mapped in a median runoff condition but for
increasing precipitation. Soil loss isovalues are in t ha�1 event �1 for MHYDAS and STREAM and in
t ha�1 yr�1 for PESERA and MESALES.
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differences in dispersions obtained from OATðB�s Þ and
OATðBsÞ reveal the effect of spatial distributions of the
‘‘masked’’ parameter, here Be.

[49] MHYDAS exhibits SB�=BðsÞ ratios from 2.7 to 30.6,
tending to decrease with increasing P and to increase with
increasing R conditions. These systematically high values
indicate noticeable high-order effects, measuring a strong
sensitivity to distribution of the ‘‘masked’’ equivalent erod-
ibility. As MHYDAS is far less sensitive to distributions of
the equivalent slope, SB�=BðeÞ ratios stay around unity. The
exceptionally high SB�=BðeÞ ratio for (Pmin, Rmed) condi-
tions is a numerical artifact associated with ‘‘divide by
zero’’ problems.

[50] STREAM was not tested in B* configurations, so
high-order effects could not be identified. Like STREAM,
PESERA had weak SB=AðsÞ and SB=AðeÞ ratios, but then
showed SB�=BðsÞ values between 13.4 and 24.6 and a stable
SB�=BðeÞ value of about 1.5, with the exception of an unex-
plained 2.1 value for (Pmed, Rmax). The sensitivity of
PESERA to spatial distributions of its superparameters is
mostly due to high-order effects, with the dominating influ-
ence again being equivalent erodibility.

[51] For MHYDAS, PESERA, and MESALES, the
SB�=Aðs; eÞ ratio has very controlled values, not diverging
with increased (P, R) conditions associated with worst-case
scenarios. High-order effects are largely responsible for

sensitivity of the models to spatial distributions of their
parameters. These effects are of comparable magnitudes in
the spatially homogeneous and distributed cases.

4. Conclusion
[52] The introductory and theoretical work presented by

Cheviron et al. [2010] was applied here for a comparative
sensitivity analysis of four distributed erosion models:
MHYDAS, STREAM, PESERA, and MESALES. Beyond
differences in their underlying concepts and nominal scales,
common causal links exist in their internal structures, which
the (P, R, p) procedure tried to exploit best. The innate
parameterization of each model was decomposed into cate-
gories accounting for input fluxes (precipitation P), propen-
sity for surface flows (runoff conditions R), and erosion
processes (p) governed by values of the equivalent slope
(ps) and equivalent erodibility (pe). Soil loss predictions
expressed as multilocal model responses M(P, R, ps, pe)
achieve the ultimate possible reduction in dimensionality of
the problem by resorting only to the four compulsory com-
ponents of erosion models. Graphical and numerical com-
parisons in responses and sensitivity trends between models
were made possible by coding all arguments of the M func-
tion into small dimensionless integers and running models
on the same virtual catchment. For spatially homogeneous

Table 1. Selected SA Values Indicating Dispersion of Soil Loss Results Obtained from Screenings Shown in Figure 4a, Involving
Spatially Homogeneous Configurations of Equivalent Slope (ps) and/or Equivalent Erodibility (pe), Tested One at a Time (OAT) or
Together in Latin Hypercube (LH) Samplesa

Model Screening Dispersion

Pmin Pmed Pmax

Rmin Rmed Rmax Rmin Rmed Rmax Rmin Rmed Rmax

MHYDAS OATðpsÞ SAðsÞ - - 0.7 - 0.6 0.7 0.4 0.4 0.4
OATðpeÞ SAðeÞ - 9.1 13.9 - 5.4 12.0 8.7 10.6 11.5
LHðps; peÞ SAðs; eÞ - 36.9 85.0 - 6.4 54.1 47.5 47.7 46.0

STREAM OATðpsÞ SAðsÞ 3.3b 0.7 0.9 0.9 0.6 0.7 0.6 0.7 0.7
OATðpeÞ SAðeÞ 9.3b 4.4 3.4 3.5 1.8 1.7 1.7 2.6 2.6
LHðps; peÞ SAðs; eÞ 13.3b - - - 2.3 - - - 3.7

PESERA OATðpsÞ SAðsÞ 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9
OATðpeÞ SAðeÞ 37.7 30.0 26.7 40.6 27.3 26.4 48.7 38.6 27.7
LHðps; peÞ SAðs; eÞ 113.3 90.0 80.3 121.9 82.0 79.3 146.3 115.9 83.2

MESALES OATðpsÞ SAðsÞ 0.0 0.9 0.8 0.3 3.0 2.2 4.0 2.7 0.6
OATðpeÞ SAðeÞ 0.0 0.7 2.1 0.0 2.1 1.5 0.0 1.9 0.0
LHðps; peÞ SAðs; eÞ 0.7 3.0 2.7 4.3 9.9 2.3 10.3 7.5 0.6

aDispersion was calculated as the spread of soil loss results obtained during OAT or LH simulations, normalized by the reference soil loss result of
each model (equation (1)) for indicated precipitation (P) and runoff (R) conditions.

bValues obtained for P ¼ 2 instead of P ¼ Pmin ¼ 1.

Table 2. Selected SB/A Ratios of Dispersion Values Obtained From Screenings Involving Spatially Distributed (Bs, Be) and Spatially
Homogeneous (ps, pe) Configurations of Equivalent Slope and Equivalent Erodibility, Shown in Figures 4a and 4b

Model

Screening

Relative Dispersion

Pmin Pmed Pmax

B A Rmin Rmed Rmax Rmin Rmed Rmax Rmin Rmed Rmax

MHYDAS OATðBsÞ OATðpsÞ SB=AðsÞ - - 2.3 - 3.7 1.7 10.8 4.8 3.0
OATðBeÞ OATðpeÞ SB=AðeÞ - 1.1 23.3 - 4.4 12.5 18.4 13.8 11.6

STREAM OATðBsÞ OATðpsÞ SB=AðsÞ 0.2a 0.7 0.8 0.8 0.8 0.5 0.9 0.4 0.4
OATðBeÞ OATðpeÞ SB=AðeÞ 0.2a 0.6 0.5 0.6 0.3 0.3 0.3 0.4 0.4

PESERA OATðBsÞ OATðpsÞ SB=AðsÞ 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
OATðBeÞ OATðpeÞ SB=AðeÞ 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

MESALES OATðBsÞ OATðpsÞ SB=AðsÞ - 0.4 0.0 2.7 0.3 0.1 - 2.5 0.0
OATðBeÞ OATðpeÞ SB=AðeÞ - 3.3 1.0 - 0.4 1.0 - 15.2 -

aValues obtained for P ¼ 2 instead of P ¼ Pmin ¼ 1.

W01510 CHEVIRON ET AL.: COMPARATIVE SENSITIVITY ANALYSIS W01510

13 of 15



patterns of erosion processes, sensitivity G(P, R, ps, pe) was
defined as a directional Gateaux derivative, yielding GP,
GR, and Gp values for variations involving P, R, or p,
respectively. For spatially distributed patterns of erosion proc-
esses, sensitivity was measured as the normalized dispersion
of soil loss results with respect to a reference median homoge-
neous case. The dependence of dispersion on hydrological
(P, R) conditions was studied, along with the ratio of disper-
sions obtained in the distributed and homogeneous cases.

[53] The estimated erosion rates ranged from 0 to 100 t
ha�1 event�1 (MHYDAS and STREAM) or t ha�1 yr�1

(PESERA and MESALES) in most of the situations, but the
continuous models (MHYDAS and PESERA) exhibited a
more dynamic behavior than the discrete ones (STREAM
and MESALES) through stronger variations in model out-
puts and sensitivity indices. This result goes against any a
priori classification of sensitivity of the models by reference
to their nominal scales and rather outlines the role played
by innate structure or perhaps the calibration of the models
in influencing their sensitivity scores.

[54] A major finding was that equivalent erodibility plays
a dominant role over equivalent slope, except for MESALES,
in which both entries have comparable weights. Sensitivity
trends, nevertheless, fluctuate under varied hydrological
(P, R) conditions, which emphasizes the interest in and rele-
vancy of performing a separation between what is due to
hydrology and what is specific to topography or soil vulner-
ability in model predictions. All models showed comparable
sensitivities to their hydrological conditions and equivalent
erodibilities, whereas numerous model specificities appeared
in detailed analysis. Soil loss results were of the same order
of magnitude when testing spatially homogeneous or distrib-
uted configurations of equivalent slope and equivalent erodi-
bility. Combined tests involving both parameters showed
multiplicative, though not diverging, sensitivity effects for
the continuous models, additive trends for STREAM, and
disconnected sensitivities for MESALES. A probable conse-
quence is the overestimation of actual erosion rates by
MHYDAS and PESERA in worst-case scenarios.

[55] The (P, R, p) procedure may unveil sensitivity
trends hidden behind the complexity of the models whose
physical basis involves nonexplicit interactions between
parameters. For MHYDAS and STREAM, it was possible
from sensitivity curves to localize the threshold in (P, R)
conditions between low water excess conditions, where dif-
fuse erosion dominates, and high water excess conditions,
in which linear erosion takes over. Intermediate (P, R) con-
ditions are expected regions of high sensitivity for small-

scale models distinguishing diffuse and concentrated ero-
sion processes, whereas no such tipping points are visible
for coarser models.

[56] All four models showed behaviors consistent with
current knowledge on soil erosion. They could therefore be
used to model distributed erosion processes on hillslopes
during rain events (MHYDAS and STREAM) or to predict
seasonal erosion rates on larger territories (PESERA and
MESALES), provided sufficiently reliable input parameter
values are available. In particular, model results are
expected to be strongly affected by uncertainties in erodi-
bility arising from imprecise cartography or lack of infor-
mation on soil characteristics.

Notation

A spatially homogeneous configurations.
B spatially distributed configurations.

Be; B�e spatially distributed equivalent erodi-
bilities.

Bs; B�s spatially distributed equivalent slopes.
e equivalent erodibility.

Gp, GP, GR sensitivities to variations in p, P,
and R.

LH variations in two or more parameters
at once.

M(X) model response at point X in para-
meter space.

OAT variations in a single parameter at a
time.

p pe or ps.
P precipitation.

pe, ps spatially homogeneous equivalent erodi-
bility and equivalent slope.

R runoff conditions.
s equivalent slope.

SA; SB; SB� normalized dispersion of soil loss results
in A or B configurations.

SB=A; SB�=A; SB�=B ratios SB=SA, SB�=SA, and SB�=SB.
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OATðB�eÞ OATðBeÞ SB�=BðeÞ - 512.3 1.0 - 6.5 1.0 0.9 1.0 1.1
LHðB�s ; B�eÞ LHðps; peÞ SB�=Aðs; eÞ - 2.9 2.8 - 3.3 3.0 2.8 3.2 2.8

PESERA OATðB�s Þ OATðBsÞ SB�=BðsÞ 19.0 15.2 13.6 20.5 13.8 13.4 24.6 19.5 14.1
OATðB�eÞ OATðBeÞ SB�=BðeÞ 1.5 1.5 1.5 1.5 1.5 2.1 1.5 1.5 1.5
LHðB�s ; B�eÞ LHðps; peÞ SB�=Aðs; eÞ 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

MESALES LHðB�s ; B�eÞ LHðps; peÞ SB�=Aðs; eÞ 0.0 1.0 0.5 0.2 0.1 0.4 0.1 0.1 0.0
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