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Lithium (Li) and boron (B) concentrations and isotope measurements for 45 monthly rainwater samples collected over a 1-year period from four different sites in France, from coastal and inland locations (Brest, Dax, Orléans and Clermont-Ferrand) are reported. This is the first study of Li and B isotope ratios in rainwater samples collected over a long time period at a national scale. The range of Li and B isotopic variations in these rainwaters are measured to enable the determination of the origin of these elements in rainwaters and the characterization of both the seasonal and spatio-temporal effects for δ 7 Li and δ 11 B signatures in rainwaters. Lithium and boron concentrations are low in rainwater samples, ranging from 0.004 to 0.292 µmol/L and from 0.029 to 6.184 µmol/L, respectively. δ 7 Li and δ 11 B values in rainwaters also show a great range of variation between +3.2 and +95.6‰ and between -3.3 and +40.6‰ over a period of one year, respectively, for δ 7 Li and δ 11 B, clearly different from the signature of seawater. Seasonal effects (i.e. rainfall amount and month) is not the main factor controlling element concentrations and isotopic variations. δ 7 Li and δ 11 B values in rainwaters are clearly different from one site to another, indicating the variable contribution of sea salts in the rainwater depending on the sampling site (coastal vs. inland: also called the distance-from-

the-coast-effect). This is well illustrated when wind direction data (origin of air masses) is included. We found that seawater is not the main supplier of dissolved atmospheric lithium and boron, and non-sea-salt sources (i.e. crustal, anthropogenic, biogenic) should also be taken into account when Li and B isotopes are considered in hydrogeochemistry as an input to surface waters and groundwater bodies as a recharge. The isotopic variations of the water molecule, vector of the dissolved B and Li, are also investigated and reported as a contour map for δ 18 O values based on compiled data including more than 400 δ 18 O values from throughout France. This δ 18 O map could be used as a reference for future studies dealing with δ 18 O recharge signature in relation the characterization of surface waters and/or groundwater bodies.

INTRODUCTION

Atmospheric aerosols including sea salts, crustal dusts, biogenic materials and anthropogenic emissions are the main sources of chemical elements in rainwaters [START_REF] Junge | Air chemistry and radioactivity[END_REF]. The determination of the chemical composition of rainwater provides an understanding of the source types that contribute to rainwater chemistry and enhances our understanding of the dispersion of elements, whether pollutants or not, and their potential impact on hydrosystems through precipitation and wet deposition processes [START_REF] Berner | The global water cycle[END_REF].

The aim of this study is to present the results of the first study of both Li and B isotope ratios in rainwater samples collected over a long time period (i.e. monthly rainfall events over one year, [START_REF] Négrel Ph | Chemical and strontium isotope characterization of rainwater in France: influence of sources and hydrogeochemical implications[END_REF]) at a national scale. In addition, the stable isotopes of the water molecule (δD and δ 18 O) are also reported here for the same locations (Brest, Dax and Orléans) so that we can discuss the Li and B isotope data in the same context and to provide a framework for the main processes affecting the isotope signatures of the rainwater. Since rainwater is the main input in hydrogeological systems, monitoring the H-O-Li-B isotopic compositions of rainwater at the national scale should enable us to compile a reference system of meteoric isotopic signatures for all of France, as an addition to the Sr isotopes data previously reported by [START_REF] Négrel Ph | Chemical and strontium isotope characterization of rainwater in France: influence of sources and hydrogeochemical implications[END_REF].

The recent development of new isotopic techniques (e.g. lithium and boron: δ 7 Li, δ 11 B) to investigate aquifer systems has highlighted the gap in knowledge of the atmospheric inputs that are the major contributor to groundwater recharge [START_REF] Widory | Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: A synthesis[END_REF], Millot et al. 2007).

In this context, a knowledge of the spatial and temporal variability of the isotopic compositions of rainwater appears to be essential for hydrogeological investigations and also for sustainable water management. This paper presents, firstly, the hydrogen and oxygen isotope data from the French Isotopic Data Base [START_REF] Bdiso | French Isotopic Data Base on groundwater, surface water and rainwater[END_REF], in the form of a contour map linked to data from neighboring countries and, secondly, boron and lithium isotopic data on selected samples from this French monitoring network, part of the international database of the Global Network of Isotopes in Precipitation [START_REF] Gnip | Global Network of Isotopes in Precipitation[END_REF] managed by the International Agency of the Atomic Energy (IAEA).

The characterization of δ 7 Li and δ 11 B signatures in rainwaters is of major importance if we wish to increase our knowledge of the external cycles of these elements and, more specifically in the field of hydrogeochemistry, characterize the Li and B isotope signatures of the rainwater input to surface waters and/or groundwater bodies as a recharge.

To date, one measurement of δ 7 Li (+14.3‰ ± 0.7) has been reported in the literature for a rainwater event collected in Hawaii [START_REF] Pistiner | Lithium isotope fractionation during continental weathering processes[END_REF] and another (+33.3‰), slightly higher than the seawater signature, for a snow sample collected in Iceland [START_REF] Pogge Von Strandmann | Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain[END_REF]).

On the other hand, δ 11 B signatures of rainwaters are more circumscribed [START_REF] Miyata | Boron isotope variations in the atmosphere[END_REF][START_REF] Chetelat | Boron isotopes in precipitation: experimental constraints and field evidence from French Guiana[END_REF][START_REF] Rose-Koga | Boron isotopic composition of atmospheric precipitations and liquid-vapor fractionations[END_REF][START_REF] Chetelat | Use of B isotopes as a tracer of anthropogenic emissions in the atmosphere of Paris, France[END_REF]. Indeed, previous work on the characterization of δ 11 B signatures in rainwaters have shown that seawater may be a major supplier of atmospheric boron, and that boron isotopic fractionation during evaporation from seawater and removal from the atmosphere may account for the large variations of δ 11 B signatures observed in the atmosphere and in rainwater [START_REF] Miyata | Boron isotope variations in the atmosphere[END_REF]. In addition, it has been also shown that boron isotopes in rainwater are potentially good tracers of biomass burning [START_REF] Chetelat | Boron isotopes in precipitation: experimental constraints and field evidence from French Guiana[END_REF] and anthropogenic contamination of the atmosphere in a polluted environment [START_REF] Chetelat | Use of B isotopes as a tracer of anthropogenic emissions in the atmosphere of Paris, France[END_REF]).

The present study aims, therefore, at investigating Li and B isotope signatures in the rainfall input, which should be identified in either surface water or groundwater since the sources of Li and B both are atmospheric, the dissolution of Li-and B-bearing minerals, biogenic and/or anthropogenic. This study also aims to more accurately define the input of Li and B to either surface water or groundwater and place constraints on the δ 7 Li and δ 11 B values, which should be corrected for atmospheric input, in order to characterize the anthropogenic signature and/or the signature derived from water-rock interactions.

RAINWATER SAMPLES

Sampling sites

Monthly rain water samples were collected at five different locations throughout France (Brest, Dax, Orléans, Thonon and Avignon, Fig. 1). They constitute the French monitoring network, which is part of the IAEA/IOW Global Network for Isotopes in Précipitation [START_REF] Gnip | Global Network of Isotopes in Precipitation[END_REF] for isotopes of the water molecule. The long-term monthly monitoring consists in sampling rainwater in Avignon (from May-97 to Dec-02, n=60), Brest (from Apr-96 to May-03, n=83), Dax (from Oct-97 to Apr-04, n=74), Orléans (from Mar-96 to May-04, n=96) and Thonon (from Mar-95 to Dec-02, n=89).

Three of these sampling sites were monitored between 2003 and 2004 for B and Li isotopes.

One, Brest, is located in the northwest of France (N 48.24, W 04.31), less than 5 km from the Atlantic Ocean. Another, Dax, is located in the southwest of France (N 43.44, W 01.03), 30 km from the Atlantic Ocean. The third, Orléans (N 47.54, E 01.52), is located 400 km from the Atlantic Ocean. A fourth B and Li isotope sampling site is located near E 03.04), in the Massif Central, 200 km upstream from Orléans. Rainwater samples were monitored here between 1994 and 1995. The Mediterranean Sea is 300 km to the south and the Atlantic Ocean is 380 km to the west.

Sampling technique

A direct polycarbonate funnel [START_REF] Ph | Caractérisation chimique et isotopique des pluies de Cayenne (Guyane Francaise)[END_REF], 12 cm in diameter and with an area of ~ 110 cm 2 , was used to collect the rainfall samples in Brest, Dax and Orléans. This apparatus enables precipitation measurement by direct reading, without the need for preliminary transfer into a measurement test tube. The rainwater was stored in a polypropylene jerrycan to avoid any evaporation or modification of the sample. The accumulation of daily samples enabled a monthly sample of rain to be obtained.

An automatic precipitation sampler was also designed for collecting rainwater samples at the site near Clermont-Ferrand (Négrel and Roy 1998). The basic requirements for our collector were automatic detection and collection of rainfall, elimination of dry fallout, collection of frozen precipitation and prevention of sample contamination. A removable PVC lid covers the funnel when no rain is falling. The cover opens to expose the funnel when electrical contact is made in the rain detector. A polypropylene funnel (45 cm in diameter) was used to collect the rainfall.

After monthly sample collection, 100 mL were used for δD and δ 18 O determination. The rest of the rainwater samples were filtered through pre-cleaned 0.45 µm acetate filters using a pre-cleaned Nalgene filter apparatus and the filtrate was separated into two aliquots. From this: (i) 100 and 1000 mL were acidified with double-distilled nitric acid (pH = 2) and stored in pre-cleaned polyethylene bottles for major-cation analysis and lithium isotope ratio and elemental Li and B determinations, and (ii) 500 mL were stored unacidified in polyethylene bottles for anion analysis and B isotope ratio measurements.

ANALYTICAL METHODS

Chemical parameters and stable isotopes of the water molecule

The rainwater samples were chemically analysed by atomic absorption spectrometry (Ca, Na, K, and Mg concentrations, accuracy 5%), ion chromatography (Cl, SO 4 and NO 3 concentrations, accuracy 5%) and inductively coupled plasma mass spectrometry (Li and B concentrations, accuracy 5%). Accuracy and precision for major and trace elements was verified by repeated measurements of standard materials during the course of this study: namely Ion96-3 and LGC6020 for cations and anions and pure Li and B standard solutions (Merck) for Li and B determinations.

Oxygen and deuterium measurements were performed by various French laboratories using a standardised method. At BRGM's laboratory, a Finnigan MAT 252 mass spectrometer was used with a precision of 0.1‰ for δ 18 O and 0.8‰ for δD (vs. SMOW). Isotopic compositions are reported in the usual δ-scale (in ‰) according to δ sample (‰) = {(R sample /R standard ) -1} x 10 3 , where R is either the 2 H/ 1 H or the 18 O/ 16 O atomic ratio.

In the present work, it was challenging to measure Li and B isotope compositions in rainwater samples due to their low content (a few µmol/L). We, therefore, developed new sensitive techniques (Millot et al. 2004a, 2004b[START_REF] Guerrot | Accurate and high-precision determination of boron isotopic ratio by MC-ICP-MS Neptune. Geostandards and Geoanalytical Research[END_REF]) in order to be able to accurately and precisely determine δ 7 Li and δ 11 B for rainwater samples.

Lithium isotopes

Lithium isotopic compositions were measured using a Neptune Multi Collector ICP-MS (Thermo Fischer Scientific). 7 Li/ 6 Li ratios were normalized to the L-SVEC standard solution (NIST SRM 8545, Flesch et al. 1973) following the standard-sample bracketing method (see Millot et al. 2004a for more details). The analytical protocol involves the acquisition of 15 ratios with 16 s integration time per ratio, and yields in-run precision better than 0.2‰ (2σ m , 2

x Standard Error). Blank values are low, (i.e. 0.2%), and 5 minutes wash time is enough to reach a stable background value.

The samples must be prepared beforehand with chemical separation/purification by ion chromatography in order to produce a pure mono-elemental solution. Chemical separation of Li from the matrix was done prior to the mass analysis, following a procedure modified from the technique of [START_REF] James | The lithium isotope composition of international rock standards[END_REF], using a cationic resin (a single column filled with 3 mL of BioRad AG ® 50W-X12 resin, 200-400 mesh) and HCl acid media (0.2N) for 30 ng of Li. Blanks for the total chemical extraction were less than 30 pg of Li, which is negligible since it represents a 10 -3 blank/sample ratio.

Successful quantitative measurement of Li isotopic compositions requires 100% Li recovery during laboratory processing. Therefore, frequent column calibration was done and repeated analyses of L-SVEC standard processed through columns shows 100% Li recovery and no induced isotope fractionation due to the purification process.

Accuracy and reproducibility of the entire method (purification procedure + mass analysis) were tested by repeated measurements of a seawater sample (IRMM BCR-403) after separation of Li from the matrix, for which we obtained a mean value of δ 7 Li = +30.9‰ ± 0.4 (2σ, 2 x Standard Deviation, n = 12) over the period of the duration of the analyses. This mean value is in good agreement with our long-term measurement (δ 7 Li = +31.0‰ ± 0.5, 2σ, n = 30, Millot et al. 2004a) and with other values reported in the literature (see, for example, Tomascak 2004 for a compilation). Consequently, based on long term measurements of the seawater standard, we estimate the external reproducibility of our method to be around ± 0.5‰ (2σ).

In addition, reproducibility of the method was also tested by repeated measurements of a rainwater standard solution (TMRAIN-95, Environment Canada, National Water Research Institute) after separation/purification by ion chromatography, for which we obtained a mean value of δ 7 Li = +445.9‰ ± 0.6 (2σ, n = 10) over the period of the duration of the analyses. This mean value could not, however, be compared either to literature data or to certified values because this reference material is not certified for Li isotopes (only for Li concentration). In spite of this, it is of interest to note that this rainwater standard solution is significantly enriched in heavy lithium ( 7 Li). This is, however, not surprising because this reference material is a synthetic rainwater solution (namely: TMRAIN-95: a simulated rain sample for trace elements). Consequently, it is likely that lithium in this standard solution could come from an 7 Li-rich reagent, as was pointed out by Qi et al. 1997, who showed that δ 7 Li values in laboratory reagents could range between -11 and +3013‰. Indeed, it is well known that lithium can be isotopically fractionated due to the removal of 6 Li for use in hydrogen bombs. The remaining lithium is therefore substantially enriched in 7 Li and some of this lithium has found its way into laboratory reagents and into the environment [START_REF] Coplen | Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents[END_REF]. In addition, we also measured an ICP 7 Li-rich standard solution (Spex) that has a mean value of δ 7 Li = +241.4‰ ± 0.5 (2σ, n = 38, Millot et al. 2004b), which confirms the results found by [START_REF] Qi | Unnatural isotopic composition of lithium reagents[END_REF] Finally, concerning the lithium concentration of this rainwater standard solution (TMRAIN-95), we obtained a good agreement between the values measured by ICP-MS in our laboratory (0.059 µmol/L ± 0.003, 2σ n = 10) and the certified value (0.056 µmol/L ± 0.011).

Boron isotopes

Boron isotope composition were determined following a newly-developed methodology for precise and accurate measurement using a Neptune double-focusing multi-collector sector ICP-MS [START_REF] Guerrot | Accurate and high-precision determination of boron isotopic ratio by MC-ICP-MS Neptune. Geostandards and Geoanalytical Research[END_REF].

To avoid any drift of the mass bias induced by the sample matrix, chemical purification of 100 ng B was done before the mass analysis, following a procedure described in [START_REF] Guerrot | Accurate and high-precision determination of boron isotopic ratio by MC-ICP-MS Neptune. Geostandards and Geoanalytical Research[END_REF], using the specific boron resin IRA743 and 0.42N HNO 3 acid media with a final boron concentration of 50 ng/mL. 11 B/ 10 B ratios were normalized, following the standard-sample bracketing method, to the NIST SRM-951 standard solution [START_REF] Catanzaro | Standard reference materials: Boric acid; isotopic and assay standard reference materials[END_REF]) run through chemistry [START_REF] Guerrot | Accurate and high-precision determination of boron isotopic ratio by MC-ICP-MS Neptune. Geostandards and Geoanalytical Research[END_REF]. Analytical uncertainty for each individual determination was better than 0.1‰ at 2σ m (n = 20). Accuracy and reproducibility of the whole process were determined by repeated measurements of a seawater solution (IAEA-B1) with a mean value of δ 11 B = +39. 36‰ ± 0.43 (2σ, n = 20). This mean value is in good agreement with our measurements using the positive-TIMS-Cs 2 BO 2 technique (δ 11 B = +39. 24‰ ± 0.36 (2σ, n = 19), as well as with the data compilation obtained for an intercomparison exercise [START_REF] Gonfiantini | Intercomparison of boron isotope and concentration measurements. Part II: Evaluation of results[END_REF] and with the worldwide accepted value for seawater.

Consequently, based on long term measurements of seawater standards, we estimate the external reproducibility of our method around ± 0.5‰ (2σ).

RESULTS AND COMMENTS

Stable isotopes of the water molecule: δD and δ 18 O

The main processes controlling the δ 18 O and δD isotopic signatures in precipitations were summarized by [START_REF] Rozanski | Isotopic patterns in modern global precipitation[END_REF]: i.e. the rainfall amount, continental and altitude effects and the origins of air masses. The morphology of France is complex with the Massif Central in the centre, the Alps to the East and the Pyrénées to the South, together with the influences of both the Atlantic Ocean and the Mediterranean Sea, which have very different characteristics, as evidenced by [START_REF] Celle-Jeanton | Isotopic typology of the precipitation in the Western Mediterranean region at three different time scales[END_REF] and [START_REF] Ladouche | Chemical and isotopic investigation of rainwater in Southern France (1996-2002): Potential use as input signal for karst functioning investigation[END_REF]. It is, therefore, of primary importance to constrain the signature of the atmospheric signal in different geographical and geomorphological contexts by means of a rainfall-monitoring network.

The five monitoring stations (Brest, Dax, Orléans, Thonon and Avignon) were selected in order to have a good distribution over the national territory (Fig. 1). This enables, firstly, to follow the evolution of the isotopic signal over a West-East transect from Brest to Thonon via Orléans, and, secondly, to observe the influence of Mediterranean versus Atlantic air masses.

The equation of the Global Meteoric Water Line (GMWL) is δD = 8 x δ 18 O +10 [START_REF] Craig | Isotopic variations in meteoric waters[END_REF].

The arithmetic (unweighted) means of isotopic ratios in precipitation from nearly 410 stations are described by the following equation: δD = 8.07 (± 0.02) x δ 18 O + 9.9 (± 0.1), R² = 0.98.

Long-term means weighted by the amount of precipitation were calculated only for the year for which more than 70% of the rainfall was analysed and at least one year of observation was available [START_REF] Gourcy | Stable oxygen and hydrogen isotopes in precipitation[END_REF]. The correlation between the weighted means is: δD weighted = 8.14 (± 0.02) x δ 18 O + 10.9 (± 0.2), R² = 0.98. When all the available data from the 5 French monitoring stations are plotted in a δ 18 O vs. δD diagram (Fig. 2a), the following equation can be calculated: δD = 7.727 (± 0.066) x δ 18 O + 7.033 (± 0.451), R² = 0.97, n = 411. When only annual weighted mean values are used for each monitoring station (Fig. 2b), the equation becomes: δD = 8.347 (± 0.153) x δ 18 O + 11.662 (± 1.048), R² = 0.99, n = 31.

These global results are close to the Global Meteoric Water Line despite the variability that can be found at each French station.

The weighted mean for each station integrates all the available data over the monitoring period. The Avignon weighted mean for the period 1997-2002, δ 18 O = -5.81‰, is similar to the one calculated during the 1997-1998 period, i.e. δ 18 O = -6.1‰ [START_REF] Daniel | Signal pluie et traçage par les isotopes stables en Méditerranée occidentale. Exemple de la région avignonnaise (Sud-Est de la France)[END_REF]. These weighted means are reported in figure 3f, in which all points plot very close to the GMWL, and highlight the continental effect (also called the distance-from-the-coast-effect) with progressive depletion in heavy isotopes from Brest (Atlantic coast) to Thonon via Orléans (Fig. 1). It is worth noting that the best fit regression lines of the annual weighted means of these three stations described a quasi-straight line very close to the GMWL (Fig. 2b), suggesting a genetic link of rainfall for the three stations.

In greater detail, the continental effect can be assessed between Brest and Thonon samples (355 km apart) after removing the altitude effect for the Thonon station (at an altitude of 385 m). [START_REF] Blavoux | Etude du cycle de l'eau au moyen de l'oxygène 18 et du Tritium[END_REF] calculated an altitudinal gradient of -0.3‰/100 m in this region (Chablais, pre-Alpes), leading to a continental effect of -3.2‰ δ 18 O/1000 km in an eastward direction from the French Atlantic Coast. This value is in good agreement with the assessment of [START_REF] Lécolle | The oxygen isotope composition of landsnail shells as a climatic indicator: applications to hydrogeology and paleoclimatology[END_REF] over the French territory. The continental effect varies considerably from place to place and from season to season [START_REF] Ladouche | Chemical and isotopic investigation of rainwater in Southern France (1996-2002): Potential use as input signal for karst functioning investigation[END_REF], even over a low-relief profile. It is also strongly correlated with the temperature gradient and depends on both the topography and the climate regime.

Average annual δ 18 O values vary from year to year (Fig. 2b). For the 5 French monitoring stations, the δ 18 O values vary between 1 and 2‰ over the monitoring period, as was observed in Wallingford, UK (Darling and Talbot 2003). This is typical of temperate climates where a large part of the spread is caused by variations in the average annual temperature [START_REF] Gat | Volume II: Atmospheric Water[END_REF]. These variations from year to year show why it is difficult to assess the real signature of precipitation in a given place without long-term monitoring. This should be kept in mind when drawing a contour map of δ 18 O for a vast territory for which only a few longterm monitoring data are available.

Lithium an boron concentrations in rainwaters

Major elements (cations and anions) and lithium and boron concentrations in rainwater samples collected in Brest, Dax, Orléans and Clermont-Ferrand are given in table 1. When Cl concentrations are plotted as a function of Na concentrations (Fig. 4, Négrel et al. 2007), we observe a good correlation for the rainwater samples. The regression line between these two major elements is also shown in figure 4. A 95% confidence level is assigned to the data that falls between the two lines. The seawater dilution line is also shown in figure 4. Cl concentrations show a very strong correlation with Na concentrations (R 2 = 0.99). All the samples lie near the seawater dilution line, indicating that both the Na and Cl in these samples come from sea salt. The Brest and the Dax rainwater samples have the highest Na and Cl concentrations, whereas those collected near Clermont-Ferrand have the lowest concentrations in both Na and Cl.

Lithium and boron concentrations in rainwater samples range from 0.004 to 0.292 µmol/L and from 0.029 to 6.184 µmol/L, respectively. This range of variation for Li concentrations is significantly lower than the only other value reported for rainwater (i.e. Li = 0.520 µmol/L, in Hawaii, [START_REF] Pistiner | Lithium isotope fractionation during continental weathering processes[END_REF]. On the other hand, boron concentrations reported in here are in agreement with literature data, with values sometimes higher in the present case [START_REF] Chetelat | Boron isotopes in precipitation: experimental constraints and field evidence from French Guiana[END_REF][START_REF] Rose-Koga | Boron isotopic composition of atmospheric precipitations and liquid-vapor fractionations[END_REF][START_REF] Chetelat | Use of B isotopes as a tracer of anthropogenic emissions in the atmosphere of Paris, France[END_REF].

Li concentrations are more homogeneous than boron concentrations from one sampling site to another. The mean lithium concentration values for the various sites are quite similar (0.058, 0.066, 0.053 and 0.057 µmol/L for rainwaters collected at Brest, Dax, Orléans and near Clermont-Ferrand, respectively), whereas they are more heterogeneous for boron (i.e. 0.66, 0.90, 1.51 and 0.20 µmol/L for rainwaters collected at Brest, Dax, Orléans and near Clermont-Ferrand, respectively).

The overall range of variation for Li and B concentrations can be seen in figure 5a and5b, where lithium and boron concentrations are plotted as a function of the Na concentrations as seasalt tracer (Négrel and [START_REF] Négrel Ph | Chemistry of rainwater in the Massif Central (France) A Strontium isotope and major element study[END_REF]. Again, we see that these rainwater samples are rather homogenous for lithium concentrations (with the exception of 2 Li-rich samples). Moreover, it appears that rainwaters are slightly enriched in Li and B compared to Na derived from seawater. No correlation could be found, however, between Li and B concentrations in rainwater samples (Fig. 5c).

Lithium and boron isotopes

Lithium and boron isotope compositions are reported in table 1 and figure 6. The most striking outcome of this study is that there is a very large range of variation (between +3.2 and +95.6‰) for δ 7 Li in rainwaters. Mean δ 7 Li values are +22.5, +22.8, +16.1 and +26.2‰ for samples collected in Brest, Dax, Orléans and near Clermont-Ferrand, respectively. This range of variation is consistent with the only other value reported for rainwater (δ 7 Li = +14.3‰, in Hawaii, [START_REF] Pistiner | Lithium isotope fractionation during continental weathering processes[END_REF]. Furthermore, δ 7 Li values in rainwaters are significantly different from the δ 7 Li signature of seawater (+31‰, Millot et al. 2004a).

δ 11 B in rainwaters also shows a very wide range of variation, between -3.3 and +40.6‰. The mean δ 11 B values are +37.4, +11.4, +8.4 and +23.2‰ for rainwaters collected in Brest, Dax, Orléans and near Clermont-Ferrand, respectively. This is in agreement with literature data [START_REF] Chetelat | Boron isotopes in precipitation: experimental constraints and field evidence from French Guiana[END_REF][START_REF] Rose-Koga | Boron isotopic composition of atmospheric precipitations and liquid-vapor fractionations[END_REF][START_REF] Chetelat | Use of B isotopes as a tracer of anthropogenic emissions in the atmosphere of Paris, France[END_REF]) and is significantly different from the δ 11 B signature of seawater (+39.5‰, see data compilation reported by [START_REF] Aggarwal | The effect of instrumental mass bias on δ 11 B measurements: a comparison between thermal ionisation mass spectrometry and multiple-collector ICP-MS[END_REF]), except for Brest.

In figures 7a and 7b, δ 7 Li and δ 11 B values are plotted as a function of Li and B concentrations, respectively. No general correlation is observed between δ 7 Li and Li concentrations (Fig. 7a). Indeed, the range of δ 7 Li variation is covered at both low and high Li concentrations (with the exception of the three 7 Li-rich samples from Clermont-Ferrand). On the other hand, there seems to be an inverse correlation between δ 11 B and B concentrations (Fig. 7b). Initially high δ 11 B values (close to seawater signature, i.e. corresponding to rainwater samples from Brest, which is near the ocean) tend to decrease down to nearly -3‰ as B concentrations increase. This also means that high B concentrations in rainwaters are associated with low δ 11 B values, especially for Orléans rainwater samples.

The overall range of variation for both δ 7 Li and δ 11 B values is very great (over 90‰ and 40‰, respectively, for δ 7 Li and δ 11 B, Fig. 6), and these isotopic signatures for rainwater samples are significantly different from the isotopic signature of seawater (+31.0 and +39.5‰, respectively, for δ 7 Li and δ 11 B values). Seawater might, therefore, be a major source of dissolved atmospheric lithium and boron (especially for rainwater collected near the ocean), but other sources must also be considered.

DISCUSSION

Contour map of the stable isotopic signature of oxygen (δ 18 O)

The world map developed by the IAEA from GNIP data (GNIP 2007) is one of the few contour maps of the stable atmospheric signal that exist today. In France, a δ 18 O contour map was drawn by [START_REF] Lécolle | The oxygen isotope composition of landsnail shells as a climatic indicator: applications to hydrogeology and paleoclimatology[END_REF], based on the oxygen isotopic composition of the carbonate shell of landsnails, which have been shown to be directly linked to the annual mean δ 18 O of rainwater. A second map, based on a few rainwater and groundwater measurements, was drawn by [START_REF] Razafindrakoto | Teneurs en isotopes stables des précipitations et des eaux souterraines et leurs variations en France[END_REF].

In the present work, the stations in Brest, Dax, Orléans, Avignon and Thonon (Fig. 1) were monitored monthly for the δ 18 O and δD atmospheric signal. Rain samples from the BDISO databank are from studies dedicated to the knowledge and functioning of specific aquifers, often represent only a few months of monitoring, and are not for the same time periods. From all the available data, we selected data points with the following criteria: (1) there must be at least one year of monitoring; (2) isotopic data should be associated with the rainfall amount (if rainfall values are unavailable, data are weighted by those from the nearest meteorological station at the same altitude); (3) when two points are close, only the longest and more recent monitoring campaign is selected, as well as the lowest altitude point to minimize the altitude effect when drawing the map. Rain data from 44 points were selected (Fig. 8). Some regions are poorly documented and additional data were selected. In the Southwest of France, lakes considered to be natural rain gages under well-defined conditions (lakes in pristine environments located in the upper parts of drainage basins to limit runoff, Petelet-Giraud et al. 2005) are used after data has been corrected for evaporation. Data from 13 lakes were used. In other regions, recent groundwater (i.e. Tritium values >0 and 14 C Activity close to 100%) was used as a reference material as it has been shown to be often reasonably representative of long-term rainfall (Darling et al. 2003). Data for 12 groundwater bodies were used. No data are available for the Rhône River Valley. We, therefore, used a signature calculated from that of a landsnail shell from the Northern part of the valley [START_REF] Lécolle | The oxygen isotope composition of landsnail shells as a climatic indicator: applications to hydrogeology and paleoclimatology[END_REF].

To better determine the isotopic signature at the French border, we used data from the literature or long-term rain monitoring data in the GNIP database for neighbouring countries [START_REF] Gnip | Global Network of Isotopes in Precipitation[END_REF][START_REF] Plata-Bedmar | Composicion isotopica de las precipitaciones y aguas subterraneas de la Peninsula Iberica[END_REF][START_REF] Longinelli | Isotopic composition of precipitation in Italy: a first overall map[END_REF][START_REF] Longinelli | Isotopic composition of precipitation in Northern Italy: Reverse effect of anomalous climatic events[END_REF], Darling and Talbot 2003, Darling et al. 2003[START_REF] Schurch | Observation of isotopes in the water cycle -the Swiss National Network (NISOT)[END_REF].

The contour map of δ 18 O values was drawn manually for the following reasons: (1) to take into account the altitude from the topographic digital terrain model (DTM) for a better interpolation, reflecting the altitude affect and (2) to give a greater weight to the most representative samples (length of the monitoring campaign, altitude, etc.) when large isotopic variations were observed at small scale. Our attempts to automatically generate the map with dedicated software with kriging methods were rather inconclusive mainly because, as the data including the altitude effect, it was impossible to take into account the DTM in the interpolation without a risk of taking the altitude effect into account twice.

The resulting map of the meteoric δ 18 O signal (Fig. 8) clearly shows the main effects that could affect the isotopic signature of rainwater. The continental and altitude effects are clearly visible. It is also in good agreement with the map drawn by [START_REF] Lécolle | The oxygen isotope composition of landsnail shells as a climatic indicator: applications to hydrogeology and paleoclimatology[END_REF], with a high degree of precision, especially in the North. The new contour map still remains quite schematic because of the limited number of available data points and the complexity of the French topography. This is especially true in mountainous regions, where the density of data is too low and the relief too uneven for us to draw reliable lines. δ 18 O iso-value lines are, therefore, represented by dotted lines in the Pyrénées and the Alps.

The map also shows that the signature along the Atlantic coast is relatively homogeneous with a δ 18 O value of around -5‰, despite the difference in latitude and the known climatic differences. The same phenomenon is observed on the Mediterranean coast of Italy [START_REF] Longinelli | Isotopic composition of precipitation in Italy: a first overall map[END_REF] and can be at least partially related to the contribution of seawater vapor to the coastal precipitation, with values characteristic of a first condensate of vapor [START_REF] Gat | Volume II: Atmospheric Water[END_REF]. While the isotopic signal on the Mediterranean coast is not significantly different from that on the Atlantic coast, the Mediterranean signature is more rapidly depleted in heavy isotopes as we move inland from the coast. This could be due to the presence of mountains close to the coast, which generate rainfall. Rainwater in and around Paris is less depleted in heavy isotopes than available data indicates for the surrounding area. This might be explained by a slightly higher temperature induced by the high population density and intensive industrial activity. Such a phenomenon has been described in Rome (Italy) [START_REF] Longinelli | Isotopic composition of precipitation in Italy: a first overall map[END_REF]. The Northern coast presents a δ 18 O signal, depleted in heavy isotopes compared to the Atlantic coast (-6.5‰ vs. -5.3‰ in Brest and -5.6‰ in Dax), which suggests that clouds that produce rainfall are already depleted in heavy isotopes. This phenomenon has been observed over the British Isles. The δ 18 O contour lines are parallel on each side of the Chanel. This map is the first one drawn at the national scale based on most of the isotopic data available in France, and which takes into account data for neighbouring countries in order to better constrain the contour lines along the borders. It is, therefore, a unique tool for assessing the stable isotopic signature of aquifer recharge for oxygen isotopes.

Nevertheless, it is worth noting that the rainwater data used often integrate only one year of rainfall and we have shown that the mean annual weighted δ 18 O values vary from 1 to 2‰ due to variations in the average annual temperature typical of temperate climates. This map can, therefore, be a valuable addition to local rain monitoring when a specific aquifer is being studied.

In this paper, we report only the δ 18 O signature for France. However, δD can be determined using the global correlation between δD and δ 18 O (the Global Meteoric Water Line) since all the data considered plot, for the most part, along this line.

Lithium and boron isotopes variations

Seasonal and spatio-temporal variations

Monitoring rainwater samples over a period of one year at different locations allows us to study seasonal effects on the range of variation for both Li and B isotopes. We have plotted Li and B isotopes as a function of the rainfall amount (mm) (Figs. 9a andb) and the month (Figs. 9c andd). The rainfall amount seems to have no effect on δ 7 Li variations (Fig. 9a). The total range of variation for δ 7 Li values seems to be independent of the rainfall amount, and this is especially true for Orléans, Brest and Dax. On the other hand, for Brest and Dax samples (sampling points on or near the coast), the rainfall amount does seem to control δ 11 B variations to some extent (Fig. 9b). When the rainfall amount increases, the δ 11 B values increase for the Brest samples but decrease for the Dax samples. It is very likely that when the rainfall amount is great, there is a large contribution of sea salts derived from seawater. This is especially true for the Brest rainwater samples (sampling point less than 5 km from the Atlantic Ocean). However, the trend observed for δ 11 B the rainwater samples from Dax (30 km inland) is more complex. We know that, in this area, rainfall comes not only from the Atlantic Ocean to the West, but also from the Pyrénées Mountains to the South. Therefore, we can assume that for the Dax rainwater samples: (i) during the summer and winter (low rainfall amount), δ 11 B is controlled mainly by the sea salt contribution coming from the Atlantic Ocean, whereas (ii) during spring and autumn when rainfall is heavier, δ 11 B might also be controlled by rain coming from the mountains that has been in contact with local dust (i.e. silicate, carbonate and/or evaporite particulates from the Pyrénées), lowering δ 11 B values. In addition, like Négrel et al. ( 2007) have observed for Sr isotopes at the same sampling site, biogenic sources might also contribute to the δ 11 B signature of the Dax samples, also lowering the δ 11 B values. Indeed, Dax is located in a huge maritime pine forest (Pinus pinaster) that covers 860,000 hectares, the trees growing in sand containing chlorite, micas, feldspars and quartz [START_REF] Righi | Mineralogic evolution in hydromorphic sandy soils and podzols in "Landes du médoc[END_REF].

Rainwater samples from inland sampling points (Orléans and Clermont-Ferrand) do not show any correlation of δ 11 B values with the rainfall amount (Fig. 9b). Likewise, the month does not appear to have any effect on δ 7 Li values (Fig. 9c). However, 7 Li-rich values for Clermont-Ferrand rainwater are observed during the winter and spring seasons (December, February and April).

There appears to be no correlation between δ 11 B values and the month (Fig. 9d). The range of variation for δ 11 B is controlled, first of all, by the location (inland vs. coastal) of the sampling point.

Wind direction and air mass origin

The origin of the air masses for the French rainwater under consideration was studied using the French Meteorological Institute database (www.meteofrance.com). Daily maximum wind direction (0 to 360°) and rainfall (mm) were considered. Average monthly wind direction data are given in table 1 for each sampling point. These average values were calculated by weighting daily maximum wind directions by the corresponding rainfall amount and only rainy days were considered.

The effect of wind direction, and thus the origin of the air masses, at each sampling site was investigated by identifying correlations between wind direction and Li-B concentrations and their isotopes.

Lithium

Li concentrations and δ 7 Li values were plotted as a function of the wind direction (Fig. 10).

The wind direction does not control Li content in Brest and Clermont-Ferrand rainwater samples (Figs. 10b and10h). For Dax and Orléans sampling sites, however, there is a correlation between Li concentration and wind direction (Figs. 10d and10f). The lithium concentration is controlled by the origin of the air masses for these rainwater samples, with higher Li concentrations in rainwater coming from the ocean (wind direction around 270°, i.e. W). Concerning δ 7 Li values, no effect is observed, here again, for Brest rainwaters (Fig. 10a), which means that most of rainwater at this site is homogeneous for both Li and its isotopes, even though the wind direction can range significantly (from 50 to 240°, i.e., NE to WSW).

For Dax and Orléans samples, opposite phenomena are observed concerning Li isotopes.

When the air masses have a Western origin (oceanic input), δ 7 Li values tend to increase slightly for Dax rainwaters but decrease slightly for Orléans rainwaters (Figs. 10c and10e).

The most striking observation concerns Clermont-Ferrand rainwaters, for which δ 7 Li values display two interesting trends as a function of the wind direction (Fig. 10g). In winter and spring samples, there is a positive correlation between δ 7 Li and wind direction. However, autumn and summer samples show no change in the δ 7 Li signature when the wind direction is between 120 and 300°. This means that the 7 Li-rich rainwaters are characterized by air masses coming from SSW of the sampling site during the winter and spring.

Boron

B concentrations and δ 11 B values were plotted as a function of the wind direction (Fig. 11). B concentrations in Brest and Clermont-Ferrand rainwaters are not controlled primarily by the wind direction (Figs. 11b and 11h,respectively). However, for Dax and Orléans rainwaters, B concentrations increase when the wind comes from West of the sampling site (marine origin, Figs. 11d and11f). There is no evidence that δ 11 B values in Brest and Clermont-Ferrand rainwaters are controlled by the wind direction (Figs. 11a and11g), whereas δ 11 B values in Dax rainwaters increase when the wind direction ranges from 210° (SW) to 270° (W) (Fig. 11c), in agreement with our conclusions in section 5.2.1. concerning the two major origins of boron at this site (sea salt from the Atlantic Ocean (W) and rainfall from the Pyrénées (SW) having lower δ 11 B values). δ 11 B values in rainwater in Orléans decrease slightly when the wind direction ranges from 180° (S) to 270° (W) (Fig. 11e).

The origin of the air masses is, therefore, an important factor that can control the dissolved concentration of Li and B for the Dax and Orléans sampling sites, but seems to have no effect on Clermont-Ferrand and Brest rainwaters. This is probably due to the homogeneity of the rainfall for the Brest sampling site. On the other hand, for Dax, rainwater could have two main origins -the SSW (with lower δ 7 Li and δ 11 B values) or the W (with higher δ 7 Li and δ 11 B values), which reflects the contribution of marine sea salts. For Clermont-Ferrand, the wind direction has no significant effect on either Li or B concentrations, whereas we have seen that the 7 Li-rich rainwaters are characterized by air masses coming from the SSW of the sampling site during the winter and spring.

The spatial range of variation for Li and B isotopes could then be studied because we monitored rainwater samples at different locations in France (coastal and inland). The rainwaters sampled at Brest, near the sea, have both δ 7 Li and δ 11 B values close to the seawater signature (Figs. 6 and 12), whereas those sampled at Dax, Orléans and Clermont-Ferrand have a very broad range of variation for both δ 7 Li and δ 11 B values -from crustal values (i.e. from -2 to +2‰ and from -5 to +10‰, respectively, for δ 7 Li and δ 11 B, [START_REF] Teng | Lithium isotopic composition and concentration of the upper continental crust[END_REF][START_REF] Tomascak | Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences[END_REF][START_REF] Barth | Boron isotope variations in nature: a synthesis[END_REF][START_REF] Barth | Geochemical and boron, oxygen and hydrogen isotopic constraints on the origin of salinity in groundwaters from the crystalline basement of the Alpine Foreland[END_REF]and Millot et al. 2007) up to the δ 7 Li and δ 11 B signatures of seawater (+31.0 and +39.5‰, respectively, for δ 7 Li and δ 11 B). However, higher δ 7 Li values are measured in some rainwater samples collected near Clermont-Ferrand. We, therefore, discuss below the origins of lithium and boron in rainwaters, and the associated isotope signatures, that might explain the observed range of variation for both Li and B isotope systematics.

Origin of lithium and boron in rainwaters

Seawater (by contributing sea salts) might be one of the major suppliers of atmospheric lithium and boron, but other sources must also to be taken into account. We, therefore, determined the contribution of sea salts to lithium and boron in rainwater samples.

Na concentrations in rainwater samples can be used to estimate the sea salt contribution of other ions because Na is the best tracer of sea salt input in rainwater [START_REF] Keene | Sea-salt corrections and interpretation of constituent ratios in marine precipitation[END_REF][START_REF] Négrel Ph | Chemistry of rainwater in the Massif Central (France) A Strontium isotope and major element study[END_REF][START_REF] Basak | The chemical composition of rainwater over Büyükçekmece Lake, Istanbul[END_REF][START_REF] Rastogi | Chemical characteristics of individual rain events from a semiarid region in India: Three-year study[END_REF]. Distinguishing between the sea salt (ss) and non-sea salt (nss) component contributions in rainwater (rw) is essential if we wish to characterize the chemistry of precipitation (Négrel and [START_REF] Négrel Ph | Chemistry of rainwater in the Massif Central (France) A Strontium isotope and major element study[END_REF][START_REF] Schmitt | The source of calcium in wet anthropogenic deposit: Ca-Sr isotope evidence[END_REF][START_REF] Al-Khashman | Ionic composition of wet precipitation in the Petra Region, Jordan[END_REF][START_REF] Rastogi | Chemical characteristics of individual rain events from a semiarid region in India: Three-year study[END_REF], Négrel et al. 2007).

To calculate the contribution of Li and B (X in equation 1) in the sea salt component (ss) with seawater (sw) characteristics, the following equation is used:

sw rw ss Na X Na X ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ × = (1)
Na is used as a marine tracer in rainwater (see Négrel and Roy 1998 and references therein). The contribution of the non-sea salt component (nss) is the difference between the total composition of rainwater (rw) and the sea salt (ss) contribution:

ss rw nss X X X - = (2) 
This equation enables us to determine the contribution of sea salts for lithium and boron concentrations in rainwaters (Fig. 13). Results show that the contribution of sea salt for boron concentrations in rainwaters is greater than for lithium concentrations. Indeed, considering average values for the 4 different sampling sites, we see that the marine contribution (sea salt) to B in rainwaters is twice that to Li (22.3% and 12.0%, respectively, Fig. 13). The distance-from-the-coast-effect (inland vs. coastal location) is the key parameter controlling the marine contribution for both Li and B to rainwater concentrations. Samples collected inland (Orléans and Clermont-Ferrand) show the lowest sea salt contributions. Rainwaters from Dax have intermediate values (Fig. 13), whereas rainwaters collected at Brest have the highest contributions of marine sea salt to Li and B concentrations (25% and 49.8% on average, respectively, for Li and B).

Although these results are not surprising, they show that although seawater does, indeed, supply dissolved atmospheric lithium and boron, non sea salt sources represent the major source of Li and B in rainwaters.

This could be of importance in hydrogeochemical studies of surface water and groundwater bodies because rainwater is an input for the former and a recharge for the latter. The non sea salt signature for Li and B isotopes should, therefore, be taken into consideration for future studies in the investigation of their isotope systematics in water.

Lithium isotopes in rainwaters

The fact that most of dissolved Li in rainwaters does not have a marine origin is in agreement with the range observed in δ 7 Li in our samples (+3.2 and +95.6‰) compared to the marine signature of Li isotopes (~ +31‰).

δ 7 Li values in rainwater samples were plotted as a function of Li derived from sea salt (Fig. 14a) in an attempt to identify the different sources contributing to the rainwaters Li isotopes signature. For rainwater sampled at a coastal location (Brest), the marine contribution is relatively great (9 to 45%), but another source or other sources is/are needed in order to explain the range of variation in these δ 7 Li values (+15.1 to +28.6‰). The same is observed for rainwaters collected at Dax and Orléans, but at these locations the non sea salt contribution should be even greater since these sites are located inland (especially Orléans) and show lower marine contributions. The dissolution of either Li-bearing minerals or anthropogenic inputs might explain lower δ 7 Li values compared to the seawater signature (~ +31‰).

Continental rocks have δ 7 Li values ranging from -4 to +8‰ (Teng et al. 2004 and references therein) and might contribute to rainwater signatures by interaction in the atmosphere between continental particles and water molecules. In addition, most carbonates analysed to date show δ 7 Li values between +6 and >25‰ (e.g. [START_REF] Hoefs | Lithium isotope composition of Quaternary biogene carbonates and a global lithium isotope balance[END_REF][START_REF] Hall | Determination of the lithium isotopic composition of planktic foraminifera and its application as a paleo-seawater proxy[END_REF][START_REF] Hathorne | Temporal record of lithium in seawater: A tracer for silicate weathering?[END_REF][START_REF] Vigier | In-situ measurements of Li isotopes in foraminifera[END_REF]) and could also be cited there. It is, however, more likely that multiple sources exist for the crustal component at the scale of France.

The three rainwater samples from Clermont-Ferrand having a 7 Li-rich signature (δ 7 Li values of +63.8, +77.6 and +95.6‰) are, however, notable because they have significantly heavier Li isotopic compositions than seawater. Négrel and [START_REF] Négrel Ph | Chemistry of rainwater in the Massif Central (France) A Strontium isotope and major element study[END_REF] and [START_REF] Roy | A Pb isotope and trace element study of rainwater from the Massif Central (France)[END_REF] have shown that rainwater in this area is likely to record an anthropogenic input due to agricultural activities (e.g. fertilizers application). These high δ 7 Li values might, therefore, be explained by the contribution of a local input derived from fertilizers and/or soil amendments used by farmers in this area. This is also in good agreement with recent results of Négrel et al. ( 2009) concerning the Li isotopic characterization of a peat bog located near our sampling site. In this study, the 7 Li-rich contribution to surface waters is explained by the dissolution of fertilizers and soil amendments having δ 7 Li values higher than +215‰ [START_REF] Négrel Ph | Lithium isotopes as a probe of groundwater circulation in a peat land[END_REF]).

This heavy lithium component is attributed to synthetic Li added into fertilizers and soil amendments, derived from a 7 Li-rich reagent, as was reported by [START_REF] Qi | Unnatural isotopic composition of lithium reagents[END_REF]. In addition, we have seen (section 5.2.2) that these 7 Li-rich rainwaters are characterized by air masses coming from the SSW of the sampling site during the winter and spring, which is when soils are fertilized and amended.

When Li isotopes are plotted as a function of the Na/Li molar ratio (Fig. 15), we observe that samples from Clermont-Ferrand seem to indicate a mixing of a crustal component (granite and/or carbonate) and an anthropogenic component ( 7 Li-rich end-member), whereas samples from Brest, Dax and Orléans seem to indicate a mixing of a crustal component (complex due to the relative contribution of different particles derived from carbonate or granite) and a marine end-member.

Boron isotopes in rainwaters

As stated above, most of the dissolved B in rainwater is not of marine origin (for rainwater samples collected at inland locations in Orléans and Clermont-Ferrand, in particular). This is in agreement with the range observed in δ 11 B values in our samples (-3.3 and +40.6‰) compared to the marine signature of B isotopes (+39.5‰, Aggarwal et al. 2004 and data therein).

δ 11 B values in rainwater samples have been plotted as a function of B derived from sea salt (Fig. 14b). Seawater seems, nevertheless, to be a major supplier of rainwater boron in Brest, near the ocean. However, the rainwater sample collected at Brest in August 2003 is notable (the lowest δ 11 B value: +27.5‰). It was collected at a time when France and Western Europe were having an exceptionally severe heat wave with record temperatures and little rainfall [START_REF] Luterbacher | European seasonal and annual temperature variability, trends, and extremes since 1500[END_REF][START_REF] Chase | Was the 2003 summer European heat wave unusual in a global context?[END_REF], and it is very likely that this sample is not representative.

Concerning the Dax, Orléans and Clermont-Ferrand rainwater samples, another source or other sources is/are needed in order to explain the range of variation in δ 11 B values. As for lithium, the dissolution of either B-bearing minerals or anthropogenic inputs might explain δ 11 B values lower than the seawater signature (+39.5‰). A crustal component probably contributes to rainwater signatures by the interaction in the atmosphere of continental particles and water molecules. B isotopic compositions for the main crustal lithologies have been well identified, with δ 11 B values ranging from -5 to +10‰, from +15 to +30‰ and from 0 to +35‰, for granite and gneiss, marine evaporite and carbonate, respectively [START_REF] Barth | Boron isotope variations in nature: a synthesis[END_REF][START_REF] Barth | Geochemical and boron, oxygen and hydrogen isotopic constraints on the origin of salinity in groundwaters from the crystalline basement of the Alpine Foreland[END_REF]. This crustal component is expected to contribute to the B isotopic rainwater signature, although the crustal component is probably made up of a combination of several sources (different particles coming from different lithologies).

Plotting B isotopic compositions as a function of NO 3 /B molar ratios (NO 3 being a good tracer of fertilizer) provides additional and important information (Fig. 16). Samples from Dax, for which we have already suggested a possible biogenic input, are in agreement with field data reported by [START_REF] Chetelat | Boron isotopes in precipitation: experimental constraints and field evidence from French Guiana[END_REF] for the biomass-derived end-member (this is also true for most samples from Orléans, located near a large forested area, "La Sologne", an area covering 500,000 ha). In addition, the B values in rainwaters from this study are little affected by anthropogenic emissions compared to those of rainwater sampled in Paris that have an urban aerosol component [START_REF] Chetelat | Use of B isotopes as a tracer of anthropogenic emissions in the atmosphere of Paris, France[END_REF]. Most rainwater samples from Clermont-Ferrand (for which we have cited a possible fertilizer input based on Li isotope data) also reveal a mixing trend toward a fertilizer end-member (Fig. 16) based on B isotopes tracing.

CONCLUSIONS

This work has made it possible to better characterize Li, B, H and O isotopes in rainwaters.

The main results of this study are:

• Li and B concentrations and δ 7 Li and δ 11 B signatures in rainwater samples collected over one year in four stations (Brest, Dax, Orléans and Clermont-Ferrand) varied greatly over the sampling period.

• Lithium and boron concentrations are low and comprised between 0.004 and 0.292 µmol/L and 0.029 and 6.184 µmol/L, respectively.

• δ 7 Li and δ 11 B values in rainwaters also vary greatly between +3.2 and +95.6‰ and -3.3 and +40.6‰ over a period of one year, respectively.

• The seasonal effect (i.e. the month or rainfall amount) is not the main controlling factor for these isotopic variations. However, the continental effect (distance from the coast) is a key parameter, determining the origin of both lithium and boron derived from marine sea salts. In addition, the origin of air masses (wind direction) is also a key parameter that controls the contribution of sea salts derived from the Ocean.

• The most striking outcome of this study is that most lithium and boron in rainwaters does not have a marine origin. Seawater is not the major supplier of atmospheric lithium and boron and a non-sea-salt source, such as a crustal component and/or an anthropogenic contribution, should also be taken into account when Li and B isotopes are studied in hydrogeochemistry as an input to surface waters and a recharge to groundwater bodies. This may be important in the understanding of dissolved Li and B distributions in ground-and formation waters, and should be taken into account in future studies.

• A contour map of France for δ 18 O was drawn after compiling data that included more than 400 values from all of France. This map could be used as a reference for future studies concerning the recharge δ 18 O signature in surface water and groundwater body characterization. It represents a unique tool for assessing the stable isotopic signature of the recharge of aquifers for oxygen isotopes.

Table caption Table 1

Major cations and anions (Na, K, Mg, Ca, Cl, SO 4 , NO 3 , µmol/L), Li and B concentrations (µmol/L) and Li and B isotope compositions of rainwaters by location and sampling date.

Rainfall amount (mm) and wind direction are also reported in this table. The prevailing wind direction data (in °) at each sample location were obtained from the Météo France database.

Data reported for monthly average values in this table are weighted by the rainfall amount and only days with precipitation are considered. 

Figure 8

Isovalue contour lines of the mean annual oxygen isotopic composition (δ 18 O) of rainwater in France. This map is based on rainwater, groundwater, lake (corrected for evaporation) and landsnail shell data. Contour lines from Spain (Plata-Bedmar 1994), Italy (Longinelli andSelmo 2003, Longinelli et al. 2006) and United Kingdom (Darling andTalbot 2003, Darling et al. 2003), together with Swiss data [START_REF] Schurch | Observation of isotopes in the water cycle -the Swiss National Network (NISOT)[END_REF] where also used to constrain lines at the French borders. The location of rainwater sampling stations for δ 18 O vs. δD is also shown on this map (blue: short-term monitoring; red: long-term monitoring). δ 11 B (‰) plotted as a function of NO 3 /B molar ratios. The anthropogenic end-member (urban aerosols) is from [START_REF] Chetelat | Use of B isotopes as a tracer of anthropogenic emissions in the atmosphere of Paris, France[END_REF], the biomass-derived end-member is from [START_REF] Chetelat | Boron isotopes in precipitation: experimental constraints and field evidence from French Guiana[END_REF] and the fertilizer end-member is from Widory (pers. comm.). 
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Figure 2 2a:

 2 Figure 2 2a: δ 18 O vs. δD for all the monthly samples from the 5 long-term monitoring stations (Orléans, Brest, Dax, Thonon and Avignon. 2b: Annual weighted means of the same 5 stations. The Global Meteoric Water Line is also drawn (GMWL, δD = 8 x δ 18 O +10).

Figure 3

 3 Figure 3 3a to 3e: δ 18 O vs. δD for the monthly samples for each station. 3f: Mean weighted values for the period considered at each station. Blue diamonds correspond to individual data, red stars are the weight mean values and the grey dashed line is the Global Meteoric Water Line (GMWL) is δD = 8 x δ 18 O +10.

Figure 4

 4 Figure 4Cl concentrations in rainwaters (µmol/L) plotted as a function of the Na concentrations in rainwaters (µmol/L). The seawater dilution line and the linear relationship between Cl and Na are represented. A 95% confidence level is assigned to the data that falls between the two lines (modified from[START_REF] Négrel Ph | Chemical and strontium isotope characterization of rainwater in France: influence of sources and hydrogeochemical implications[END_REF]).

Figure 5 5a

 5 Figure 5 5a and 5b: Lithium and boron concentrations in rainwaters (µmol/L) vs. sodium concentrations in rainwaters (µmol/L). 5c: Lithium concentrations in rainwaters (µmol/L) plotted as a function of boron concentrations in rainwaters (µmol/L).

Figure 6

 6 Figure 6Histograms for δ 7 Li and δ 11 B (‰) values in rainwater samples.

Figure 7

 7 Figure 7 7a and 7b: δ 7 Li and δ 11 B (‰) values plotted as a function of lithium and boron concentrations, respectively, in rainwaters (µmol/L).

Figure 9

 9 Figure 9 9a and 9b: δ 7 Li and δ 11 B (‰) values plotted as a function of rainfall amount (mm); 9c and 9d: and sampling month.

Figure 10 δ 7

 107 Figure 10 δ 7 Li (‰) values and Li concentrations (µmol/L) plotted as a function of wind direction for each sampling site. Bold lines represent parameter trends as a function of wind direction.
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 11 Figure 11 δ 11 B (‰) values and B concentrations (µmol/L) plotted as a function of wind direction for each sampling site. Bold lines represent parameter trends as a function of wind direction.
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 127 Figure 12δ 7 Li (‰) plotted as a function of δ 11 B (‰) in rainwater samples.
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 13 Figure 13Histograms for Li and B contribution of marine sea salts (%) in rainwater samples.

Figure 14 14a

 14 Figure 14 14a and 14b: Li and B isotopic compositions plotted as a function of Li and B contribution of marine sea salts in rainwater samples, respectively.
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 157 Figure 15δ 7 Li (‰) plotted as a function of the Na/Li molar ratio.
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Table 1 Location / Sampling date Reference Rainfall amount Main Wind direction

 1 

	δ 7 Li δ 11 B	‰ ‰	23.4 35.1	19.3 27.5	15.1 38.1	22.2 39.6	17.7 40.3	27.2 40.6	28.6 40.1	26.3 37.8	25.8 39.5	22.7 37.5	19.4 35.2	34.1 15.9	21.5 7.9	21.1 12.9	25.2 8.3	19.8 2.0	21.0 11.8	23.0 7.1	23.5 19.8	17.2 9.4	18.9 7.9	22.8 7.8	25.3 26.5	13.0 29.8	14.2 13.1	19.2 6.0	11.2 -0.3	9.2 -2.4	19.4 -3.3	14.3 0.0	22.9 22.7	21.9 9.8	77.6 11.9	6.7 22.9	8.7 28.7	4.9 25.0	--	6.7 32.8	9.0 32.0	14.7 19.5	--	--	63.8 27.2	33.2 25.4	95.6 4.8
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