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Abstract:  

Cap rock failure assessment, either tensile fracturing or shear slip reactivation of pre-

existing fault, is a key issue for preventing CO2 leakage from deep aquifer reservoirs up 

to the surface. For an appropriate use in risk management, the uncertainties associated 

with such studies should be investigated. Nevertheless, uncertainty analysis requires 

                                                 
1 Corresponding author at. BRGM, 3 av. C. Guillemin BP36009, 45060 Orléans Cedex 2, France. 

Tel.: +33 2 38 64 30 92; fax: +33 2 38 64 36 89. 

E-mail address: j.rohmer@brgm.fr  

mailto:j.rohmer@brgm.fr
mailto:j.rohmer@brgm.fr


 2 

multiple simulations and a direct use of conventional numerical approaches might be 

too computer time-consuming. An alternative is to use conventional analytical models, 

but their assumptions appear to be too conservative. An intermediate approach is then 

proposed based on the response surface methodology, consisting in estimating the 

effective stress state after CO2 injection as a linear combination of the most influential 

site properties based on a limited number of numerical simulations. The decision maker 

is provided with three levels of information: (1) the identification of the most important 

site properties; (2) an analytical model for a quick assessment of the maximal 

sustainable overpressure and (3) a simplified model to be used in a computationally 

intensive uncertainty analysis framework. This generic methodology is illustrated with 

the Paris basin case using a large scale hydromechanical model to assess caprock failure 

in the injector zone. 

 

Keywords: CO2 geological storage; Tensile fracturing; Shear failure; Response surface 

method; Sensitivity analysis; Uncertainty analysis 

 

Nomenclature 

b   Biot's coefficient 

c'   Coefficient of internal cohesion (Pa) 

dv   Lithostatic vertical total stress gradient (Pa/m) 

E   Young's modulus (Pa) 

f   Numerical model 

Fs   Shear slip failure criterion 
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Ft   Tensile failure criterion 

g   Response surface model 

H   Layer thickness (m) 

k   Intrinsic permeability (m²) 

K0   Initial stress state (defined as h/v) 

nX   Number of input variables 

NS   Number of samples 

P   Pore pressure (Pa) 

Pinj   Injection pressure (Pa) 

Pcs   Maximal sustainable overpressure, shear failure (Pa) 

Pct   Maximal sustainable overpressure, tensile failure (Pa) 

R²   Coefficient of determination 

RMSE   Root mean square error 

RT   Tensile strength (Pa) 

X   Vector of model input variables 

X
*
   Vector of most influential input variables 

x   Model input variable 

zinj   Injection depth (m) 

Greek symbols 

   Linear regression coefficient 

P.  Pore pressure change (Pa)

ij   Kronecker symbol = 0 if i  j, =1 otherwise 

'   Angle of internal friction (°) 
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µ   Mean of the training data 

  otal stress (Pa) 

'v   Vertical effective stress (Pa) 

'h   Horizontal effective stress (Pa) 

'm   Mean effective stress (Pa) 

  Maximal shear stress (Pa) 

  Poisson’s ratio

   Porosity (%) 

 

1 Introduction 

CO2 capture and geological storage (denoted CCS) is seen as a promising technology in 

the portfolio of measures required to mitigate the effects of anthropogenic greenhouse 

gas emissions (IPCC, 2005). Among the available options, geological storage in deep 

aquifers is recognized to offer very large potential storage capacity with a broad 

distribution throughout the world in all sedimentary basins (e.g. Bachu, 2002). A 

prerequisite to its large-scale implementation is demonstrating its safety. 

Among others, ensuring cap rock integrity constitutes one of the key aspects of safety. 

Deep aquifers are open geological systems, which commonly lack structural 

confinement; caprock layers represent sealing and confining geological units for such 

CO2 geological storage sites. Several authors (Streit and Hillis, 2004; Hawkes et al., 

2005; Rutqvist et al., 2007 and 2008; Vidal-Gilbert et al., 2008) have shown that CO2 

injection operations lead to reservoir fluid pressure increase and to mechanical stresses 

changes, which might potentially induce creation of new fractures or reactivation of pre-
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existing faults in the caprock layers. These mechanical discontinuities (fault or fracture) 

represent leakage pathways (e.g. Wiprut and Zoback, 2000) for CO2 to escape from the 

deep aquifer reservoir, hence generating potential risks for the humans and the 

environment (Holloway, 1997), and also decreasing, if not ruining, the efficiency of the 

storage to mitigate climate change. Other damaging effects might be associated with 

fracturing or fault reactivation such as ground surface subsidence (e.g. Feignier and 

Grasso, 1990) or in extreme cases, induced earthquakes (e.g. Sminchak and Gupta, 

2003). 

From a practical point of view, caprock failure assessment is carried out using 

predictive models that involve a large number of parameters. Uncertainty is an 

unavoidable aspect owing to the limited knowledge of the complex underground 

system, no matter how extensive site characterisation may be. A proper caprock failure 

assessment should include management of the sources of uncertainty associated with the 

underground medium, as outlined for instance in the proposal for European Directive on 

CO2 geological storage (EC, 2008, Annex I, 3.3.4 “Risk characterisation”). For an 

appropriate use in CCS risk management, uncertainty analysis should be flexible 

regarding the nature of the available data, easily adaptable to the enrichment of storage 

site knowledge and its computation should be time-efficient. A large number of 

approaches exist to carry out uncertainty analysis, such as Monte Carlo sampling 

methods in a probabilistic framework (Fishman, 1996), Fuzzy sets (Zadeh, 1965), 

“hybrid” methods using fuzzy sets and probability distributions (e.g. Guyonnet et al., 

2003). These approaches either rely on optimization or on random based procedures, 

hence requiring multiple model simulations, which may be computationally intensive 

when applied to a high-fidelity simulation code used for caprock failure assessment. To 
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meet such constraints, replacing the complex models by a simplified analytical model 

appears to be a good solution, as it can be easily and rapidly computed. Furthermore, 

such simplified models can be used in methodological frameworks to help regulating 

authorities and stakeholders auditing risk assessment procedures (for instance, Bouc et 

al., 2008; Oldenburg et al., 2009). 

In this context, the objective of the current work is to develop simplified models to 

carry out uncertainty analysis in caprock failure assessment in a view to inform risk 

management. The first part of the paper gives an overview of the conventional 

approaches (both numerical and analytical) to address caprock failure tendency. The 

limitations of both approaches are outlined regarding two requirements: (1) the multiple 

model simulations of the uncertainty analysis; (2) the simplicity, practicability and 

flexibility of the risk models to guide risk management. In a second part, an alternative 

strategy is described based on the response surface methodology (Box and Draper, 

1987). Such a methodology has already been successfully used in other fields such as 

structural reliability problems (Bucher and Bourgund, 1990), radioactive waste disposal 

(Helton, 1993), environmental aspects (Iooss et al., 2006). A third part illustrates the use 

of the simplified models to guide decision making for geomechanical risk management 

in the context of the French Paris Basin, based on the studies carried out in the 

PICOREF project (Brosse et al., 2006; Grataloup et al., 2008). 

2 Caprock failure tendency assessment 

Various studies, either at theoretical or at experimental level, have shown that rock 

mechanical failure is controlled by the effective stress ’, which can be defined as 

follows (Terzaghi, 1943). 
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P

'          (1) 

 

Where  is the Kronecker symbol (ij=0 if ij and ij=1 otherwise) and  is the total 

stress. 

Several authors (Streit and Hillis, 2004; Hawkes et al., 2005; Rutqvist et al., 2007 and 

2008; Vidal-Gilbert et al., 2008) have shown that the CO2-injection operations lead to 

an increase in the pore pressure inside and around the host reservoir, which results in a 

general decrease of the effective stress (by convention, compressive stress is positive). 

Two main mechanical failure mechanisms have to be taken into account when 

predicting the performance of a particular site for CO2 sequestration (e.g. Rutqvist et al., 

2007 and 2008), namely: (1) tensile fracturing and (2) Shear slip reactivation of pre-

existing fractures and faults. 

2.1 Tensile fracturing 

A tensile fracture can be induced provided that the minimal effective stress ’3 becomes 

negative (by convention, compressive stress is positive) and its absolute magnitude 

exceeds the tensile strength either of the rock matrix or of the fracture (denoted RT). In 

an objective of risk management, we consider that the most critical tensile fracture is 

vertical, as it represents a direct conduit from the host reservoir to the surface. In the 

present study, the tensile failure criterion Ft is defined such that ’3=’h as follows: 

 

)(),(
''
hThTt

RRF          (2) 

 

Tensile fracturing appears provided that Ft0.  
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2.2 Shear slip fault reactivation 

The potential for shear slip along pre-existing faults (or fractures) can be defined based 

on the Coulomb criterion, using the maximum shear stress , which acts along the fault 

plane, and on the mean effective stress ’m (Jaeger and Cook, 1969). In an objective of 

risk management, we assume that a cohesionless fault could exist at any point of the 

studied zone with an arbitrary orientation following the methodology described in 

(Rutqvist et al., 2007 and 2008). The Coulomb criterion can be written in the principal 

stress plane (Jaeger and Cook, 1969) as follows: 

 

)'cos(')'sin(
'

 cm         (3) 

 

Where c’ is the fault coefficient of internal cohesion and ’ is the fault angle of internal 

friction. ’ depends on the fault static coefficient of friction, whose lower-limit value is 

0.6 based on field observations in fractured rock masses. This corresponds to ’=30° 

(e.g. Streit and Hillis, 2004). Nevertheless, caprock layers are usually shale geological 

formations (e.g. Birkholzer et al., 2009) and faults may contain clay minerals such that 

’ may be lower than 30° (Byerlee, 1978). Thus, shear slip failure analysis is conducted 

considering a conservative lower bound of 15° (least likely value) and a plausible upper 

bound of 30° (most likely value). 

The shear and mean stress components can be written using the effective principal stress 

components ('1 ; '3) such that: 

 

)(5.0
'

3
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1
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In the present study, we consider that the most critical faults are cohesionless (i.e. c’=0) 

with a “sub-vertical” orientation. In such a case, the shear slip failure criterion Fs is 

defined such that ’3=’h and ’1=’v as follows:  

 

)'sin()()(),,'(
''''''

 hvhvvhs
F      (6) 

 

A “sub vertical” pre-existing cohesionless fault is reactivated provided that Fs0. 

2.3 Numerical analysis 

The effective stress state after injection can be investigated by means of numerical 

computer code. A commonly used technique is the finite element method (see Jing and 

Hudson, 2002 for an overview). This technique can take into account, among others, 

complex geological architectures, complex injection scenarios, coupling between 

different physical phenomena and various types of rock materials. 

Hereafter, we describe a typical numerical large scale coupled hydraulical and 

geomechanical model to assess caprock failure tendency in the injector zone of a 

multilayered geological system such as the French Paris basin case. 

2.3.1 Geometry and boundary conditions 

Fig. 1 represents the geometry and the boundary conditions of the numerical model. The 

model is axisymmetric so that the injector well represents the vertical axis of symmetry 
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(left boundary). The multilayered system consists of the deep aquifer reservoir (denoted 

in abbreviated form RES), the caprock (denoted CAP), the basement (denoted BAS) and 

the overburden (denoted OVE) formation. A large lateral extent (100 km) is chosen so 

that the boundary condition has minimal effect on the simulation results. At this 

distance, the initial hydrostatic pressure is imposed. Vertical displacement at the bottom 

and horizontal displacement at the lateral boundaries are fixed. 

 

[Fig. 1 about here] 

 

2.3.2 Modelling assumptions 

The problem is solved in the framework of the isothermal saturated porous media using 

the fully coupled hydromechanical simulator Code_Aster (e.g. Chavant et al., 2002). 

The mechanical behaviour of the rock matrix is elastic and governed by the Young’s 

modulus (denoted E) and the Poisson’s ratio (denoted ). Hydraulical properties are 

defined by the intrinsic permeability (denoted k) and the porosity (denoted ). 

The initial pore pressure is hydrostatic. The initial stress state is determined by the ratio 

K0 between the vertical and the horizontal total stress components and the lithostatic 

vertical total stress gradient dv.  

The porous medium is fully saturated by a unique fluid so that CO2 injection is 

modelled by a gradual increase of the pore pressure. The pressure load Pinj is imposed 

along the thickness of the reservoir layer (left boundary, see Fig. 1) and the effective 

stress state evolution is assessed in the injector zone at the interface between the 

caprock and the reservoir layer after one year of injection. This zone is viewed as the 
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most critical zone, because injection-induced pressure buildup is maximal there, as 

shown by Birkholzer et al. (2009).  

The proposed numerical model only remains valid for an analysis of the effective stress 

state evolution within the injector zone. Outside this zone, a more complex model 

should be used, such as a sequential coupling between a multiphase and 

multicomponent fluid flow transport code (to describe the behaviour of the supercritical 

CO2 in the saline aquifer) and a mechanical code (Rutqvist et al., 2007 and 2008, Vidal-

Gilbert et al., 2008). The use of such models is beyond the scope of the present paper 

and represents a perspective for further works. Note that the uncertainty methodology 

proposed in this paper is generic and can be applied to such models as well.  

2.3.3 Limitations for uncertainty analysis 

The model mesh consists of more than 24000 nodes and almost 50000 elements with a 

minimal mesh dimension of 50 cm in the injector zone. The computer time for a single 

simulation ranges from 10 to 30 minutes with an average value of 15 minutes depending 

on the input variables. Uncertainty analysis implies exhaustive simulations of multiple 

stochastic realizations. The number of simulations can be very large depending on the 

number of uncertainty sources and above all, when the objective is to assess the 

occurrence of very low probability events. Thus, conducting such an analysis using the 

described numerical model appears to be too computationally intensive and thereby too 

time consuming. 

2.4 Conventional analytical methods 
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A good alternative is to replace the large scale complex numerical model by a 

simplified analytical model. Two commonly used analytical methods are described as 

follows (e.g. Rutqvist et al., 2007). 

2.4.1 Analytical approach n°1 

We assume that pressure distribution is homogeneous in the aquifer layer and that the in 

situ stress field remains unchanged during injection. In this case, the total stress state 

after injection remains constant to the remote total stress state so that changes in the 

effective stresses (either horizontal or vertical) exactly correspond to the opposite of the 

changes in the pore pressure P. 

2.4.2 Analytical approach n°2 

A second approach consists in assuming a simplification of the reservoir geometry (e.g. 

Streit and Hillis, 2004; Hawkes et al., 2005). The aquifer layer can be modelled by an 

idealized thin and laterally extensive reservoir. In this case, the vertical total stress is 

assumed equal to the remote total stress, whereas the horizontal total stress depends on 

the Poisson’s ratio , on the Biot’s coefficient b, and on the pore pressure change P 

(i.e. the so-called “poroelastic effect”). 

 

Pb 





1

)21(
3

          (7) 

 

2.4.3 Limitations for uncertainty analysis 

Rutqvist et al. (2007) have shown that the described analytical approaches might lead 

either to an over- or to an under- estimation of the maximal sustainable injection 
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pressure. An additional comparison study is carried out in this section. The tensile 

failure criterion (with RT=0) and the shear slip failure criterion of a cohesionless fault 

(with ’=30°) are evaluated at the interface of the caprock and the reservoir layer in the 

injector zone at zinj=1500 m. We use the previously described numerical model and both 

analytical models. Several randomly generated material and site configurations are 

defined based on the assumptions in Table 1. 

 

[Fig. 2 about here] 

 

Fig. 2 depicts the comparison between the numerically and analytically estimated 

failure criteria. The straight black line represents the first bisector. The closer the dots to 

the straight line, the better the agreement between the numerical and the analytical 

analysis. It appears that the tensile failure criterion is overestimated by both 

conventional analytical approaches, whereas the shear slip failure criterion is 

overestimated for the highest values and underestimated for the lowest values. The 

assumptions on which conventional analytical models are based appear to be too 

conservative. This result is consistent with Rutqvist et al. (2007), who concluded that 

numerical analysis results in a more accurate estimation of the maximum sustainable 

CO2 injection pressure, because it can assess the injection-induced spatial evolution of 

both fluid pressure and stress, including important mechanical interactions between the 

reservoir and the caprock layer. 

Other analytical models exist. The most recent model is developed by Soltanzadeh and 

Hawkes (2008) with application in (Soltanzadeh and Hawkes, 2009) based on the 

Eshelby’s theory of inclusions for a poroelastic material. Nevertheless, such model 
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shows limitations regarding the objective of the paper, as it cannot account for 

multilayered cases where mechanical properties of the reservoir are different from those 

of the surrounding rock, as outlined by Soltanzadeh and Hawkes (2008). Besides, it 

appears to be more adapted for reservoir of finite extension such as oil and gas 

reservoirs. 

3 Response surface strategy 

The assumptions, on which conventional analytical approaches are based, appear too 

constraining for uncertainty analysis. Numerical approaches may entail a heavy 

computational burden for uncertainty analysis. An intermediate solution between both 

approaches is proposed in the framework of the response surface methodology (Box and 

Draper, 1987) to take advantage of the accurate estimation of the numerical analysis and 

of the low computational cost of analytical analysis. 

3.1 Objective 

The objective is to develop analytical models using the previously described numerical 

model to estimate the horizontal and vertical effective stresses ('h ; 'v) at the interface 

between the caprock and the reservoir layer. To limit computer time cost, only a finite 

number of numerical simulations are run (step 1 of the response surface methodology). 

A catalogue of analytical models is constructed for different combinations (dv ; zinj) of 

lithostatic vertical total stress gradients and of injection depths, which are viewed as 

design parameters for the storage site. The main difficulty stems from the number of 

input variables of the numerical model (in total 20). A sensitivity analysis is carried out 

to select the most influential variables of the numerical model (step 2). The 
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approximation quality of ('h ; 'v) is  then assessed (step 3) in the view to use such 

models for uncertainty assessment. 

3.2 Response surface method 

Formally, let us consider the numerical model f defined as follows: 

 

),....,,()('
21 nX

xxxfXf         (8) 

 

Where X=[x1,...,xnX] corresponds to the vector of the nX input variables of the numerical 

models. We consider in total 20 input variables (see Table 1). ’ represents the 

numerically calculated effective stress (either horizontal or vertical) in the injector zone 

at the interface between the caprock and the reservoir layer. 

The response surface method (Box and Draper, 1987) consists in constructing a function 

that simulates the behaviour of the real model in the space of the input variables. The 

complex numerical model f is replaced by a mathematical approximation g, referred to 

as a response surface model. In this study, a first order polynomial (i.e. a linear 

regression model) is used as in Equation (9). 

 





nX

j

jj
xXgXf

1

0
)()('        (9) 

 

The objective is to determine the nX regression coefficients  using a least squares 

regression analysis. 

3.3 Step 1: generation of the training data 
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The linear regression is based on a mapping of observation samples of the form {X
j
, ’

j
} 

(with j ranging from 1 to the total number of pairs NS). The mapping is referred to as the 

training data of the response surface. The samples are generated randomly through the 

Latin hypercube sampling method (McKay et al., 1979 and further developed by Iman 

et al., 1981). This sampling method is combined with the “maxi min” space filling 

design criterion (Koehler and Owen, 1996) to maximise the exploration of the input 

variable domain. A sample of NS=100 simulations has been generated based on the 

assumptions in Table 1. Note that intrinsic permeabilities are expressed using the Darcy 

unit (denoted D): 1 D corresponds to 1.10
-12

 m². 

 

[Table 1 about here] 

 

Table 1 represents the validity domain of the developed model and is defined using 

typical properties of the aquifer formations for CO2 geological storage, with high 

intrinsic permeability and porosity, and of caprock layers, such as shale formations, 

with low intrinsic permeability and porosity (e.g. Birkholzer et al., 2009 and Rutqvist et 

al., 2007 and 2008).  

Note that K01.0, so that the simplified models are developed for an extensional stress 

regime. In such a stress regime, Soltanzadeh and Hawkes (2009) have demonstrated that 

only faults located in rocks overlying and underlying the reservoir tend towards 

reactivation, which is seen as the most critical event for the mechanical integrity of 

storage reservoir. In a compressional stress regime (i.e. K01.0), fault reactivation is 

more likely to occur within the reservoir and adjacent to its flanks.  

3.4 Step 2: most sensitive variable selection 
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The numerical model presents a large number of input variables (in total 20). Each input 

variable has a different influence on the numerical model outputs. A sensitivity analysis 

is conducted to identify the contributions of individual inputs to the uncertainty in 

analysis outcomes to keep only the most influential parameters in the response surface 

model (Saltelli et al., 2000). In this view, a forward stepwise selection procedure is 

chosen (e.g. Storlie and Helton, 2008). It operates in the following manner. 

In a first step, a response surface model is constructed for each candidate input variable 

using Equation (9). This results in nX one-dimensional linear models. The best of these 

models is identified using the root mean square error RMSE, which is defined as 

follows: 

 

2

1

))()((
1







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XfXg
N

RMSE       (10) 

 

The one-dimensional model with the minimal RMSE is selected and the corresponding 

input variable, say for instance x1, is identified as the most important input variable. In a 

second step, two-dimensional response surface models are constructed using the best 

candidate x1, selected in the first step and each of the remaining nX–1 input variables. 

The parameter, say for instance x2, associated with the minimal RMSE is selected. In a 

third step, three-dimensional response surface models are constructed using the best 

candidates x1 and x2, respectably selected in the first and second step, and each of the 

remaining nX–2 input variables. Following the same principle, the third best candidate 

is selected and the process is continued until the selection criterion RMSE has reached 

an “acceptable” threshold. 
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[Fig. 3 about here] 

 

Fig. 3 depicts the variable selection respectably for ('h ; 'v) for dv=0.0245 MPa/m 

and zinj=1500 m. After selection of the first variable, the RMSE of the best response 

surface models for ('h ; 'v) respectably reaches 3.40 MPa and 1.06 MPa. These values 

remain too large regarding the objective of uncertainty analysis and the selection 

procedure is continued. The RMSE decreases to reach respectably 1.06 MPa and 0.67 

MPa during the second step of the selection procedure. The selection procedure is 

repeated six times until the RMSE reaches less than 3.5 bars for both stress components. 

This threshold represents less than 3 % of the mean of the training data for both stress 

components. This can be considered an “acceptable” threshold. Besides, an additional 

selection step does not provide any significant decrease of RMSE and the selection 

procedure is then stopped.  

3.5 Step 3: validation procedure 

To use the response surface models as predictive models in the framework of an 

uncertainty analysis, the quality of the approximation should be assessed. We propose a 

cross-validation approach, which consists in estimating how well the response surface 

constructed from a set of training data is going to perform on future “as-yet-unseen” 

data. In this study, a “leave-one-out cross-validation” (e.g. Hjorth, 1994) approach is 

chosen. This technique involves using a single observation from the initial training data 

as the validation data, and the remaining samples as the new training data. A linear 

regression is performed with the new training data in order to predict the validation 

data. This procedure is repeated so that each observation in the initial training data is 
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used once as a validation data. Fig. 4 depicts the numerically calculated effective stress 

(horizontal and vertical) versus the estimated effective stress using the response surface 

model for dv=0.0245 MPa/m and zinj=1500 m.  

 

[Fig. 4 about here] 

 

The estimated data are close to the straight black line (first bisector), hence indicating a 

good approximation. A metric of the approximation quality is defined using the 

coefficient of determination (denoted R²) as follows: 

 

   
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


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''²        (11) 

 

Where ’ is the true value, ’e is the estimated value and µ the mean value of the 

training data. When the variation between the true and the estimated value is small, R² is 

close to 100 %, which indicates that the response surface model is successful in 

matching the observed results. In the case of Fig. 4, R² respectably reaches 99.0 % and 

99.5 % for 'h and 'v. 

4 Use for an informed decision, Paris Basin illustrative case 

4.1 Methodology 

The validated response surface models associated with ('h ; 'v) are then used to 

estimate the cap rock failure criterion for the tensile mechanism Ft (Equation 2) and for 

the shear slip mechanism Fs (Equation 3) as a linear combination of the most important 
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site properties X
*
 and of the injection pressure Pinj. Let us define the overpressure as the 

difference between the injection pressure and the initial pore pressure. The maximal 

sustainable overpressure Pct and Pcs for both failure mechanisms can then be expressed, 

such that Ft(Pct ; X
*
)=0 and Fs(Pcs ; X

*
)=0 as a linear combination of the selected site 

properties X
*
. Such linear models provide three levels of information for an efficient 

support decision making in CCS risk management. The French Paris basin is used as an 

illustration case, for which dv reaches 0.0245 MPa/m and zinj reaches 1500 m (Vidal-

Gilbert et al., 2008). 

4.2 Level 1: prioritisation and sensitivity measure of site properties 

Knowledge increases with additional information and data, but for efficient risk 

management, it is important to know what source of information is critical and by how 

much its knowledge is useful. In other words, the site properties on which the effort 

should be made to have sufficient knowledge should be prioritised. In this view, the 

response surface model provides the selection of the most influential site properties 

(step 2 of the response surface methodology).  

Furthermore, the linear regression coefficients associated with Pct and Pcs directly 

measure the sensitivity of each site property. Note that the input variables are 

normalised between 0 and 1. When the regression coefficient is positive, the 

relationship is direct so that the critical injection pressure increases, if the site property 

increases. When the regression coefficient is negative, the tendency is inverted. 

 

[Fig. 5 about here] 

 

Fig. 5 depicts the regression coefficients for both maximal sustainable overpressures Pct 
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(with tensile strength RT=0) and Pcs (for a cohesionless pre-existing fault with ’=30°). 

This analysis shows that the most sensitive site property is the initial stress state K0. The 

relationship is direct so that storage sites with the lowest initial stress state present the 

highest risk of caprock failure and injection pressure in such storage sites should be 

carefully controlled. This result is consistent with the conclusions of Hawkes et al. 

(2005) and of Rutqvist et al. (2007 and 2008). The Poisson’s ratios CAP and RES are 

selected as second and third sources of uncertainty so that storage sites with the highest 

Poisson’s ratio present the highest risk of caprock failure.  

Based on this analysis, the most critical configuration can be defined for all site 

properties (Table 2) so that the maximal sustainable overpressure Pct and Pcs are 

minimized (considering the validity domain defined in Table 1). 

 

[Table 2 about here] 

 

4.3 Level 2: conservative assessment of maximal sustainable 

overpressure 

Using the linear models of the failure criteria Ft and Fs, abacuses can be constructed 

under the form “overpressure versus most influential site properties”.  

 

[Fig. 6 about here] 

 

Fig. 6 depicts the abacus for the tensile failure mechanism. The green coloured surface 

represents the failure surface with RT ranging from 0 to 1 MPa.  
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We describe how such an abacus should be read. Let us consider an operator, who aims 

at injecting CO2 with an overpressure twice the initial pore pressure. Fig. 6 gives the 

minimal value of the initial stress state K0 (of 0.54) to prevent the cap rock from 

fracturing (with RT=0), considering that all other parameters (namely CAP, RES, kRES 

and HCAP) are taken in the most critical configuration (Table 2). In the same manner, the 

minimal value for the Poisson’s ratio of the cap rock layer CAP should reach at least 

0.24 at the same overpressure level. The critical values for the other parameters should 

be read following the same principle so that the configuration is always chosen as the 

most critical one, hence implying that this evaluation remains a conservative estimate. 

 

[Fig. 7 about here] 

 

Fig. 7 depicts the abacus for the shear slip failure mechanism considering a cohesionless 

pre-existing fault. The blue coloured surface represents the failure surface with ’ 

ranging from 15 to 30°. Following the same principle as for tensile failure mechanism, 

let us consider an operator, who aims at injecting CO2 with an overpressure twice the 

initial pore pressure. Fig. 7 gives the minimal value of the initial stress state K0 (of 

0.605) to prevent a cohesionless pre-existing fault (with ’=30°) from being reactivated, 

considering that all other parameters (namely CAP, RES, kRES, HCAP, kCAP ERES and 

kBAS) are taken in the most critical configuration (Table 2). 

4.4 Level 3: uncertainty analysis 

The third level of analysis consists of the uncertainty assessment. Several approaches 

exist and we focus on the commonly used Monte Carlo method in a probabilistic 
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framework. Let us define the following random variables: (1) the horizontal effective 

stress and (2) the critical angle of internal friction, for which the shear slip failure of a 

cohesionless pre-existing fault is activated.  

The objective of the Monte Carlo technique is to simulate the probability distribution of 

both random variables, given the probability distribution assigned to the site properties, 

which are seen as input random variables. In this technique, the input distributions are 

“recreated” through sampling and the failure criteria are calculated for each stochastic 

realization of the site properties. A large number of samples may be required for the 

successful implementation of this technique depending on the number of uncertainty 

sources. This number can also be very large when the objective is to assess the 

occurrence of very low probability events. 

For each site property, we specify a probability distribution. Table 3 summarizes the 

assumptions and the references on which they are based. The probability distributions 

are either known or assumed. For instance, the probability distribution assigned to the 

reservoir intrinsic permeability kRES is empirical and based on the statistical analysis of 

the permeability measurements carried out in the Dogger geological unit for geothermal 

purposes (Rojas et al., 1989). When the mathematical representation of the probability 

distribution is not known, we assume a uniform distribution based on the “maximum 

entropy” approach (Gzyl, 1995). For instance, the probability distribution assigned to 

the initial stress state K0 is assumed to be uniform so that the lower and upper bounds 

are defined based on the studies of Cornet and Burlet (1992) and of Vidal-Gilbert et al. 

(2008). We use this methodology for all parameters with unknown probability 

distribution, except for the intrinsic permeability kCAP and kBAS, which are assumed to 

be log normal, based on the recent uncertainty analysis of Kovscek and Wang (2005). 
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[Table 3 about here] 

 

We generate 1 million realizations of the site properties using the assumptions of Table 

3. The average computer time for a single numerical code simulation reaches 15 

minutes. If the uncertainty analysis had been directly computed with the computer code 

using 50 Central Processing Units, the total computer time would have reached more 

than 6 months. As the developed models are very simple (i.e. linear), they have a low 

computer time cost and can be quickly computed. The total computer time cost of the 

response surface model corresponds to the computation of 100 code simulations 

(training data) for the response surface construction (more than one day), to the cost of 

the validation procedure (more than one day), and to the cost to carry out the Monte 

Carlo technique using the response surface model (more than one day). Globally, it 

takes only between 3 and 4 days of computation. 

 

[Fig. 8 about here] 

 

Fig. 8 depicts the probability of exceeding a given threshold of horizontal effective 

stress at different overpressure levels. The analysis shows that the risk of creating 

vertical tensile fractures is very low for the considered assumptions in the context of the 

Paris basin case. The lowest tensile strength (RT=0) is not reached even for the highest 

overpressure level (200 % of the initial overpressure). 

 

[Fig. 9 about here] 
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Fig. 9 depicts the probability of exceeding a given threshold of angle of internal friction, 

for which the shear slip failure of a cohesionless pre-existing fault is activated. The 

analysis shows that the probability of exceeding a least likely value ’=15° reaches 

0.0188
 
% considering a low overpressure level (50 % of the initial pore pressure), 6.11 

% considering a medium overpressure level (150 % of the initial pore pressure) and 

62.22 % considering a high overpressure level (200 % of the initial pore pressure). The 

most likely threshold at ’=30° is only reached with a probability of 15.15 % 

considering a high overpressure level. 

5 Concluding remarks and further works 

This paper presents a response surface methodology to develop simplified models to 

address uncertainties in cap rock failure assessment. The decision maker is provided 

with three main elements to be used for an informed CCS risk management: (1) the 

most sensitive site properties in the caprock failure analysis i.e. the parameters on which 

the characterisation effort should be made to have sufficient knowledge; (2) an 

analytical model of the effective stresses for a quick assessment of the maximal 

sustainable overpressure and (3) a simplified model to be used in a computationally 

intensive uncertainty analysis framework. The methodology has been illustrated with a 

large scale hydromechanical model to assess caprock failure in the injector zone of a 

multilayered geological system. In further works, such a generic approach can be 

applied to more complex models (for instance Rutqvist et al., 2007 and 2008, Vidal-

Gilbert et al., 2008) to assess caprock failure and fault shear slip reactivation outside the 

injector zone. In the present study, the linear assumption for the response surface proves 
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to be appropriate, but further works should also be carried out using other regression 

techniques when facing complex non linear mathematical relationships (Storlie and 

Helton, 2008). 
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LIST of FIGURES CAPTIONS 

 

Fig. 1 - Geometry and boundary conditions of the large scale multilayered 

hydromechanical model. 

 

Fig. 2 - Comparison between the numerically and analytically estimated failure criteria, 

tensile mechanism with null tensile strength (left figure) and shear slip reactivation 

considering a cohesionless pre-existing fault with angle of internal friction of 30° (right 

figure). 
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Fig. 3 - Evolution of  the Root Mean Square Error during the selection procedure of the 

most influential input variables for the response surface model respectably associated 

with the horizontal (left figure) and the vertical (right figure) effective stress. 

 

Fig. 4 - Cross validation procedure for the response surface model respectably 

associated with the horizontal (left figure) and the vertical (right figure) effective stress; 

dots represent the effective stress components estimated by the response surface. 
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Fig. 5 - Linear regression coefficients associated with the maximal sustainable 

overpressure for the tensile failure mechanism (left figure) and for the shear slip failure 

mechanism (right figure). 

 

Fig. 6 - Abacus of the overpressure (in fraction of the initial pore pressure) versus the 

most influential site properties for the tensile fracturing criterion. 
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Fig. 7 - Abacus of the overpressure (in fraction of the initial pore pressure) versus site 

properties for the shear slip reactivation criterion considering a cohesionless pre-

existing fault. 
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Fig. 8 - Probability of exceeding a threshold of horizontal effective stress in the Paris 

Basin case. 
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Fig. 9 - Probability of exceeding a threshold of angle of internal friction to reactivate a 

cohesionless pre-existing fault in the Paris Basin case. 
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LIST of TABLES 

 

 

Table 1: Definition of the site properties for the construction of the response surface 

models 

Input variable Lower bound Upper bound Unit 

Young’s 

modulus 

 

ECAP 5 20 (GPa) 

ERES 10 25 (GPa) 

EBAS 25 50 (GPa) 

EOVE 5 15 (GPa) 

Poisson’s 

ratio 

 

CAP 0.2 0.3 (-) 

RES 0.2 0.3 (-) 

BAS 0.2 0.3 (-) 

OVE 0.2 0.3 (-) 

Porosity 

 

CAP 1 5 (%) 

RES 10 20 ([%) 

BAS 1 5 (%) 

OVE 10 20 (%) 

Intrinsic 

permeability 

 

kCAP 0.000001 0.1 (mD) 

kRES 0.01 25.0 (D) 

kBAS 0.001 0.1 (mD) 

kOVE 0.01 1.0 (D) 

Thickness 
HCAP 50 150 (m) 

HRES 50 150 (m) 

Initial stress state K0 0.5 1.0 (-) 

Injection Pressure Pinj 1.25 3.0 

Fraction of the 

initial pore 

pressure 

 

 

 

Table 2: Critical configuration of the site properties to minimize the maximal 

sustainable overpressure for tensile failure mechanism Pct and for shear slip failure 

mechanism Pcs (“min” means minimal value and “MAX” means maximal value) 

 K0 CAP RES kRES HCAP ERES kCAP kBAS 

Pct min MAX MAX min min 
Not 

included 

Not 

included 

Not 

included 

Pcs min MAX MAX min MAX min min min 

 



 41 

Table 3 : Assumptions for the probabilistic distributions associated with the site 

properties in the Paris basin case 

Site 

property 

Unit Mathematical 

representation 
Parameters References 

K0 (-) Uniform 

distribution Lower bound =0.6 

Upper bound =0.85 

Cornet and 

Burlet, 1992;  

Vidal-Gilbert et 

al., 2008 

CAP  

RES 

(-) Uniform 

distribution 

Lower bound =0.2 

Upper bound =0.3 
Vidal-Gilbert et 

al., 2008 

ERES (GPa) Uniform 

distribution 

Lower bound =20 

Upper bound =25 
Vidal-Gilbert et 

al., 2008 

HCAP (m) interval Lower bound =50 

Upper bound =100 

Grataloup et al., 

2008 ;  

Brosse et al., 

2006 

kRES (D) Empirical 

probability 

distribution 

Confidence interval 

at 95 % =[0.122 ; 9] 

Permeability 

measurements in 

the Dogger layer 

based on  

Rojas et al., 1989 

Log(kCAP) (Log(mD)) Truncated 

normal 

Mean =-3 

Standard 

deviation=1 

Validity domain: 

[-6 ; -1] 

Kovscek and 

Wang, 2005; 

Brosse et al., 

2006;  

Grataloup et al., 

2008 

Log(kBAS) (Log(mD)) Truncated 

normal 

Mean =-2 

Standard 

deviation=2 

Validity domain: 

[-3 ; -1] 

Kovscek and 

Wang, 2005; 

Brosse et al., 

2006;  

Grataloup et al., 

2008 

 


