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CONTEXT

Need for appropriate tools to 
carry out sensitivity analysis 
based on limited number of 

model runs

European Directive 2009/31/EC on the geological sto rage of carbon dioxide 
states: Annex I, Step 3.2: Sensitivity characterisation

« Multiple simulations shall be undertaken to identify the sensitivity of the assessment to 
assumptions made about particular parameters. The simulations shall be based on altering

parameters in the static geological earth model(s), and changing rate functions and 
assumptions in the dynamic modelling exercise. Any significant sensitivity shall be taken into

account in the risk assessment ».

Numerical models for risk assessment:

Multiple input parameters

High non-linearities

High computer time cost

METHODOLOGY

f = “real” computing-intensive model
Y = output, X = [x1,…xnX] = inputs
g =meta-model = surrogate “simpler”
model to mimic f � “regression model”
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Evaluation of g is faster

Response surface method (Box and Draper,1987)

�Between the input and the output domain {Xj,Yj} with limited number of samples;
�Latin hypercube sampling method (McKay et al., 1979);
�Combined with the “maxi-min” space filling design criterion 
�maximise the exploration of the input domain.

Step1: Mapping=training data

A method of nonparametic regresion: 
Recursive partitioning regression (Breiman et al., 1984)
�Split a set S of observations into nP subgroups such that the observations within each 
subgroup PS are more homogeneous than they are over the whole set S;
�The model f is then estimated by a linear regression over each subgroup SG;
�g = piecewise linear function:

Hs(X) is the Heaviside function, (aS+bS.X) is the linear fit to the data associated with SG.
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g can be of several form (Storlie and Helton, 2008) : 
1. Linear regression � « One at a time »
2. Quadratic regression
3. Gaussian Process
4. Non parametric regression

When f highly non linear

Work fairly well with a 
modest number of inputs

Which meta-model ?

Extracted from Storlie and Helton, 
2008 based on the « performance

assessment for a radioactive waste
disposal facility »

Quadratic regression Recursive partitioning

SENSITIVITY RESULTS

RISK
in the injection zone

2 Local fracturing

1 Leakage through wells

RISK
at large scale

3 Large scale over- pressurization

4 Expected lateral plume extent exceeded

�Goodness of fit R² >99.0 for all models; 
�Coeff. of determination of the cross-validation Rcv² >98.0 for all models;
�The effect of salinity appears to be negligible;
�The pore compressibility should be taken into account for the large scale pressure 
impact;
�Residual gas and liquid saturation have an important effect considering trapping and 
has a moderate effect for CO2 plume extent and over-pressurized zone (at 50 % of Pmax);
�Capillary entry pressure only affects the extent of the drying-out zone near the injector;
�Small effect of the Van-Genuchten’s parameter m ;
�Both porosity & intrinsic permeability ≈ 80 % of the effect on all considered risk 
outputs.
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Adapted from Bouc et al., 2009

MODEL

200 kms

20 mSupercritical CO2
≈≈≈≈ 1 Mt/y, 10y P0= 180 bars, T0= 75 °C, Depth ≈≈≈≈ 1750 m

Based on: Andre et al., 2007, Bachu and Bennion, 2008, Birkholzer et al., 2009, Rojas et al., 1989

�1d multiphase flow transport model; 
�Dogger formation (Paris basin 
case); 
�TOUGH2/ECO2n (Pruess, 2005);
�Based on Andre et al., 2007;
�Minimum grid cell of 50 cm;
�Total number of grid cells = 576;
�Number of input parameters=8;
�Number of samples=8x30=240.355g/lSalinity

5020%Residual liquid saturation

9.E-104.5e-10Pa-1Pore compressibility

255%Residual gas saturation

0,6000,460-Van Genuchten Parameter 
m(VG)

81 00020 000PaCapillary entry pressure P 0

60,1DIntrinsic permeability

2510%Porosity

MAXminUnitInput Parameter

355g/lSalinity

5020%Residual liquid saturation

9.E-104.5e-10Pa-1Pore compressibility

255%Residual gas saturation

0,6000,460-Van Genuchten Parameter 
m(VG)

81 00020 000PaCapillary entry pressure P 0

60,1DIntrinsic permeability

2510%Porosity

MAXminUnitInput Parameter

Objective: keep only the most important parameters in the surrogate model.
Step i. a 1dim. recursive partitioning regression model is constructed for each candidate 
parameter � nX 1dim response surface models. The parameter, for instance x1, 
associated with the best of these models is identified and selected;
Step ii. 2dim. recursive partitioning regression models are constructed using the best 
candidate x1 selected in the first step and each of the remaining nX–1 parameters. The 
parameter, for instance x2, associated with the best of these models is identified and 
selected;
Step iii…. Following the same principle, the third parameter is selected and the process 
is continued until a stopping criterion is reached…
Stopping criterion = p-value (statistical approach of hypothesis testing).
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Step2: Response surface construction
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Step 3: Importance measure

Coeff. of determination R² � Goodness of fit:

The order the input parameter enters the response surface = importance order;
At each step of the response surface construction R² ≡≡≡≡ importance measure of the 
input parameter;
Additional validation through cross-validation (use observations from the initial training 
data as the validation data, and the remaining samples as the new training data for a 
new response surface construction, e.g. Hjorth, 1994).
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