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This paper presents a methodology to represent and propagate epistemic uncertainties within a scenariobased earthquake risk model. Unlike randomness, epistemic uncertainty stems from incomplete, vague or imprecise information. This source of uncertainties still requires the development of adequate tools in seismic risk analysis. We propose to use the possibility theory to represent three types of epistemic uncertainties, namely imprecision, model uncertainty and vagueness due to qualitative information. For illustration, an earthquake risk assessment for the city of Lourdes (Southern France) using this approach is presented. Once adequately represented, uncertainties are propagated and they result in a family of probabilistic damage curves. The latter is synthesized, using the concept of fuzzy random variables, by means of indicators bounding the true probability to exceed a given damage grade. The gap between the pair of probabilistic indicators reflects the imprecise character of uncertainty related to the model, thus picturing the extent of what is ignored and can be used in risk management.

Introduction

Earthquakes, as many other natural hazards (such as tsnunamis, tornados, floods, etc.), can cause both immediate and long term considerable economic and social losses (i.e. number of deaths and injuries, repair cost of the impacted civil infrastructures such as buildings, utility lines and transportation structures, indirect losses such as interruption of business activities and services, etc.). The devastating effects of the 1995 Kobe earthquake in Japan provides a vivid reminder that seismic events are a global issue in both developed and developing countries (e.g. [START_REF] Beer | The Natural Hazards Theme of the International Year of Planet Earth[END_REF]. Estimating likely losses from future seismic events and trading off potential investments in infrastructure risk reduction are key elements to support decision-making processes in planning earthquake protection and mitigation strategies (e.g. [START_REF] Ellingwood | Quantifying and communicating uncertainty in seismic risk assessment[END_REF].

Among the available approaches (see for instance [START_REF] Klügel | Review Seismic Hazard Analysis -Quo vadis?[END_REF] for a review), the scenario-based earthquake risk assessment constitutes a powerful tool to meet such objectives and to identify the areas of needed intervention and specific action measures for risk reduction considering the definition of a given earthquake scenario (for instance considering a single earthquake of given ground motion characteristics).

The presence of sources of uncertainty is an unavoidable aspect of any risk analysis methodologies (see for instance [START_REF] Me | Uncertainties in risk analysis: six levels of treatment[END_REF] for a general discussion in the field of risk analysis). These uncertainties can exert a strong influence on the loss estimates and the key issue for an efficient risk management is a proper assessment of uncertainties so that decision makers are provided with the information on the uncertainties involved (in terms of error bounds on the final risk analysis output for instance) as outlined by numerous authors in the field of earthquake risk assessment (e.g. [START_REF] Grossi | The Impact of Uncertainty in Managing Seismic Risk: the Case of Earthquake Frequency and Structural Vulnerability[END_REF][START_REF] Steimen | Uncertainties in earthquake Scenarios[END_REF][START_REF] Bommer | Earthquake Loss estimation Models: Time to open the Black Boxes[END_REF][START_REF] Der Kiureghian | Aleatory or epistemic? Does it matter? Special Workshop on Risk Acceptance and Risk Communication[END_REF][START_REF] Ellingwood | Quantifying and communicating uncertainty in seismic risk assessment[END_REF].

When dealing with uncertainties, two facets should be considered (e.g. [START_REF] Abrahamson | State of the practice of seismic hazard evaluation[END_REF]. The first facet corresponds to -aleatoric uncertainty‖ (also named -random variability‖) and arises from the natural variability owing to either heterogeneity or to the random character of natural processes (i.e. stochasticity). A common example of aleatoric uncertainty is the variability in weather. The second facet corresponds to -epistemic uncertainty‖ and arises when dealing with -partial ignorance‖ i.e. when facing -vague, incomplete or imprecise information‖ such as limited databases and observations or -imperfect‖ modelling. The large impact of epistemic uncertainty has been underlined at each stage of the earthquake risk assessment in various studies, in particular [START_REF] Spence | Comparing Loss Estimation with Observed Damage: A study of the 1999 Kocaeli Earthquake in Turkey[END_REF][START_REF] Steimen | Uncertainties in earthquake Scenarios[END_REF][START_REF] Crowley | The impact of epistemic uncertainty on a earthquake loss model[END_REF]. Epistemic uncertainties are knowledge-based and the advantage of categorizing the uncertainties into -aleatoric‖ and -epistemic‖ can guide the decision maker in allocating the resources for risk reduction through additional data acquisition and analysis and in developing engineering models [START_REF] Der Kiureghian | Aleatory or epistemic? Does it matter? Special Workshop on Risk Acceptance and Risk Communication[END_REF][START_REF] Ellingwood | Quantifying and communicating uncertainty in seismic risk assessment[END_REF].

Whereas randomness can rigorously be represented in a probabilistic framework, representing epistemic uncertainties by means of a single probability distribution in a context of -partial ignorance‖ (in particular when facing limited databases and observations) may seriously bias the outcome of a risk analysis in a non-conservative manner [START_REF] Ferson | What Monte Carlo methods cannot do[END_REF]. Therefore, adequate formal tools for their assessment and incorporation are required (Ferson and Guinzburg 1996).

In the field of seismic risk assessment, a commonly-used tool to take into account epistemic uncertainties is the logic tree approach as described in Wen et al. 2003. To illustrate the application of such a tool, one can refer to the probabilistic seismic hazard assessment of the Pyrenean region carried out by Secanell and co-authors [START_REF] Secanell | Probabilistic seismic hazard assessment of the Pyrenean Region[END_REF]). The idea is to take advantage of expert judgement to compensate for the incompleteness of existing information. For each input parameter, alternative parameters or models occupy different branches. The branches at each node are assigned weights. Once a logic tree has been set up, the hazard calculation is performed following each of the possible routes. The final output is a range of risk curves associated with weights. However, this tool presents two main drawbacks. Firstly, all types of epistemic uncertainties are merely represented by a single weight, whose interpretation in terms of probabilities or statements of belief remains a cause of debate [START_REF] Abrahamson | Probability and Uncertainty in Seismic Hazard Analysis[END_REF]. In practice, the existing information is often richer than a single weight and the expert may feel more comfortable in expressing his judgement in terms of a range of possible values.

In this context, we propose alternative tools from the formal framework of possibility theory developed on the basis of fuzzy set [START_REF] Zadeh | Fuzzy Sets as a basis for a theory of possibility[END_REF][START_REF] Zimmermann | Fuzzy Sets and its Applications[END_REF][START_REF] Dubois | Possibility theory, probability and fuzzy sets: Misunderstandings, bridges and gaps[END_REF] for the representation of three types of epistemic uncertainties, namely imprecision, model uncertainty and vagueness due to qualitative information.

The second drawback of the logic tree approach deals with the choice of the correct risk curves for a proper use for risk management [START_REF] Abrahamson | Probability and Uncertainty in Seismic Hazard Analysis[END_REF]. The question is to know whether the most approximate decision curve is the mean or a fractile, or the minimal or the maximal of all possible risk curves resulting from the combination of the tree branches. To tackle this issue, we propose to use methodological tools about uncertainty processing initially elaborated by [START_REF] Guyonnet | Hybrid approach for addressing uncertainty in risk assessments[END_REF] and further developed by [START_REF] Baudrit | Post-processing the hybrid method for addressing uncertainty in risk assessments[END_REF][START_REF] Baudrit | Practical representations of incomplete probabilistic knowledge[END_REF][START_REF] Baudrit | Joint Propagation of Probability and Possibility in Risk Analysis: toward a formal framework[END_REF]). These tools have already been successfully used in the field of environmental risk assessment [START_REF] Baudrit | Post-processing the hybrid method for addressing uncertainty in risk assessments[END_REF] and CO 2 risk assessment [START_REF] Bellenfant | Use of fuzzy hybrid uncertainty theories to analyse the variability of CO2 plume extension in geological storage[END_REF].

The first section of the paper presents the scenario based earthquake risk model. Section 2 and 3 respectively deals with the representation and the propagation of the epistemic uncertainties within the model. All the presented methodologies are illustrated using the example of the earthquake scenario model, applied to Lourdes in Southern France [START_REF] Bernardie | Microzonage de Lourdes[END_REF].

Uncertainties on the earthquake scenario itself have not been considered. Note that the scenario of Lourdes has been chosen for demonstration purpose only. All the presented results should not be interpreted as a definitive uncertainty assessment.

Earthquake risk model

In this section, we describe the main steps of the model used for the assessment of the earthquake risk in the case of the city of Lourdes. The earthquake risk model is based on the scenario based model [START_REF] Sedan | Application ARMAGEDOM Notice utilisateur[END_REF] developed by BRGM (the French Geological Survey). It is adapted from the Risk-UE methodology (Lagomarsimo and Giovinazzi 2006), which was initially developed during the European Commisssion funded project of the same name [START_REF] Mouroux | The European RISK-UE project[END_REF]).

Context of Lourdes

The city of Lourdes is situated in southern France in a seismically active region, the Pyrenees mountain chain (see Fig. 1). Over the past millennium, the city has already been affected by moderate earthquakes associated with macroseismic intensities up to VIII. Thus, mitigating seismic risk is crucial for the management of the city. In this view, an earthquake scenario has been developed by BRGM during 2005and 2006[START_REF] Bernardie | Microzonage de Lourdes[END_REF]).

[Fig. 1 about here] The information used to support decision-making for risk management is the damage assessment in each city district. It is the output of the earthquake risk assessment methodology, which can be basically decomposed into two main steps:

 Step 1: The seismic hazard assessment, which consists in evaluating the likelihood and the intensity of the seismic ground motion in the city.



Step 2: The vulnerability assessment, which consists in analyzing the behaviour of each structure and their repartition in the city under seismic loading. In the case of Lourdes, only current buildings have been considered.

1.2

Step 1: seismic hazard assessment

Seismic hazard at regional scale

The first step is the definition of the earthquake risk scenario on the basis of which the seismic hazard is evaluated. This can be performed using the definition of an individual earthquake (epicentre, source depth, magnitude, faulting mechanism and source geometry). The alternative, which is chosen in the case of Lourdes, is the definition of a scenario hypothesis on the basis of a regional probabilistic seismic hazard assessment. A single ground-motion parameter (peak ground acceleration, denoted PGA) is chosen for this hazard assessment. In order to allow seismic risk comparison between various French cities, the earthquake scenario is defined based on the national probabilistic regional seismic hazard maps [START_REF] Martin | Révision du zonage sismique de la France -etude probabiliste[END_REF][START_REF] Secanell | Probabilistic seismic hazard assessment of the Pyrenean Region[END_REF]). The reference PGA on bedrock (of 0.2 g) is considered deterministic in the case of Lourdes.

Seismic hazard at local scale

At the local scale, site effects phenomena exist, which might amplify the ground-motion. Such effects are taken into account by an amplification factor A LITHO , which depends on the geotechnical and geological properties of the soil. The amplification is assumed to be homogeneous in the so-called geotechnical zones (see illustration in the case of Lourdes, Fig. 1 on the right). The amplified PGA in the geotechnical zone is modelled as follows:

BEDROCK LITHO PGA A PGA   (1)

Macroseismic intensity assessment

The final output of the seismic hazard assessment is the macroseismic intensity I. It is defined according to the European macroseismic scale EMS-98 [START_REF] Grunthal | European Macroseismic Scale[END_REF] and is considered a continuous parameter in the framework of the macroseismic approach. It is derived from the PGA using empirical laws f of conversion. The seismic hazard assessment can be summarized as follows:

) ( BEDROCK LITHO PGA A f I   (2)

Step 2: Vulnerability assessment

Vulnerability classification

In the RISK-UE methodology, the seismic behaviour of buildings is subdivided into vulnerability classes (referred to as vulnerability typologies) showing that different types of buildings may perform in a similar way during earthquakes. The vulnerability is evaluated by means of the Vulnerability Index (denoted Vi TYP ) ranging from 0 to 1 (i.e. least to most vulnerable).

Building stock inventory

For understandable financial, time and spatial scale reasons, the studied urbanized area is subdivided into districts, which define sets of buildings (see Fig. 1 for illustration). The inventory consists in evaluating the ratio of vulnerability classes within each defined district. The ratio (also called the -proportion‖) is denoted p j . The output is the vulnerability index of the set of building in a given district Vi such that:

    TYP j N j TYP j Vi p Vi 1 (3)
Where N TYP is the number of vulnerability classes in the considered district and Vi TYPj is the vulnerability index associated with the j th vulnerability classes.

Probabilistic Damage assessment

To model the physical damage to the building, the EMS-98 damage grades [START_REF] Grunthal | European Macroseismic Scale[END_REF]) are used. Six damage grades D k (with k from 0 to 5) are considered:

D 0 =0 corresponds to -no damage‖, D 1 =1 to -slight damage‖, D 2 =2 to -moderate damage‖, D 3 to -heavy damage‖, D 4 =4 to
-very heavy damage‖ and D 5 =5 to -maximal damage‖. The Risk-UE methodology (Lagomarsimo and Giovinazzi 2006) proposes a probabilistic approach for damage assessment.

The probabilistic damage curve is defined as the cumulative probability distribution F of the event -dD k ‖.

     k D k d p D d F 0 ) ( ) ( (4)
Where p is the density probability of the Beta law, such that:
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Where  is the gamma function. 9

The curve determined by Eq. ( 5) corresponds to the decision curve to support risk management.

The form of the Beta law is determined by q, which depends on the mean damage value r D such that (Lagomarsimo and Giovinazzi 2006):

D D D r r r q 2875 . 0 0525 . 0 007 . 0 8 2 3    (6)
The mean damage value r D is the key parameter of the earthquake risk model. For a set of buildings in a given city district, r D directly correlates the seismic ground motion parameter, namely the macroseismic intensity I and the vulnerability index of the set of buildings Vi. Both parameters are defined respectably in the step 1 (-seismic hazard assessment‖) and in the step 2 (-vulnerability analysis‖) of the model. The correlation is defined as follows (Lagomarsimo and Giovinazzi 2006):
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As an example, let us consider the district N°81 in Lourdes, in which 10 % of buildings are of vulnerability classe n°1 (associated to Vi TYP1 =0.807) and 90 % of buildings are of vulnerability classe n°2 (associated to Vi TYP2 =0.776) are inventoried. The resulting vulnerability index for the district (Eq. ( 3)) is Vi=0.10Vi TYP1 +0.90Vi TYP2 =0.7791. The macroseismic I reaches VIII for the given earthquake scenario. The resulting mean damage reaches r D =2.25 (Eq. ( 7)) corresponding to a Beta law parameter q=3.687 (Eq. ( 6)). Using Eq. ( 4) and Eq. ( 5), the probability of being inferior to the damage grades D k (with k ranging from 1 to 5) respectively reaches 3.15 %, 24 %, 59.2 %, 88 % and 99 %.

In summary, Fig. 2 illustrates the main steps of the earthquake risk assessment described above.

Four sources of epistemic uncertainties are identified, namely the amplification factor A LITHO , the macroseismic intensity I, the vulnerability index Vi and the typology proportion pr j (with j from 1 to N TYP ).

[Fig. 2 about here]

Representation of epistemic uncertainties

This section presents the methodology to represent the epistemic uncertainties in the described earthquake risk model. Three types of epistemic uncertainties are dealt with: imprecision (section 2.1), model uncertainty (section 2.2) and vagueness due to qualitative information (section 2.3).

Imprecision representation

Let us consider a model parameter, which can not be precisely estimated owing to sparse data sets. The simplest approach to represent such an uncertainty is the interval, which is defined by a lower and an upper bound. But in most cases, experts may provide more information by expressing preferences inside this interval. For example, -expert is certain that the value for the model parameter is located within the interval [a, b]‖. However, according to a few measurements and its own experience, expert may be able to judge that -the value for the model parameter is most likely to be within a narrower interval [c, d]‖. To represent such information, an appropriate tool is the possibility distribution, denoted , which describes the more or less plausible values of some uncertain quantity [START_REF] Zadeh | Fuzzy Sets as a basis for a theory of possibility[END_REF][START_REF] Zimmermann | Fuzzy Sets and its Applications[END_REF][START_REF] Dubois | Possibility theory, probability and fuzzy sets: Misunderstandings, bridges and gaps[END_REF]. The preference of the expert is modelled by a degree of possibility (i.e. likelihood) ranging from 0 to 1. In practice, the most likely interval [c, d] (referred to as the -core‖ of ) is assigned a degree of possibility equal to one, whereas the -certain‖ interval [a, b] (referred to as the "support" of ) is assigned a degree of possibility zero, such that values located outside this interval are considered impossible. The intervals defined as

        ) ( , e e are called -cuts.
They contain all the values that have a degree of possibility of at least  (lying between 0 and 1) (see Fig. 3). They formally correspond to the confidence intervals 1- as defined in the probability theory, i.e This approach is carried out to represent the imprecision on two parameters, namely the amplification factor A LITHO and the typology class vulnerability index Vi TYP .

[Fig. 3 about here]

Representing imprecision on the site effects

As described in the previous section, the geotechnical zones in which amplification is homogeneous are defined from the processing of geological, geophysical (spectral analysis of surface waves and analysis of ambient vibrations) and geotechnical information. In the Lourdes case, 13 so-called geotechnical zones were defined (Fig. 1 on the right) and each of which are associated with response spectra based on 1D site response analyses [START_REF] Modaressi | Computer aided seismic analysis of soils[END_REF]). The amplification factor A LITHO is derived from the comparison between the four response spectra (two from synthetic time-histories and two from natural accelerograms) computed for the zones located on bedrock outcrops and the numerically calculated spectra for the various zones.

A sensitivity analysis is carried out for each bedrock spectrum by Bernardie and co-authors [START_REF] Bernardie | Microzonage de Lourdes[END_REF]. It results in the definition of the interval within which the Bernardie and co-authors (i.e. the panel of experts, who are in charge of the site effect analysis), are certain to find the real value. The latter defines the support of the possibility distribution associated to A LITHO . Besides, the mean value between all the possible outcomes given by each bedrock spectrum plus one standard deviation is considered by Bernardie and co-authors the most likely value for A LITHO . The latter gives the core of the possibility distribution.

Representing imprecision on the vulnerability index

The Risk-UE methodology gives the most likely Vi 0 for each type of current buildings [START_REF] Lagomarsino | Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings[END_REF]. The range of probable values V-/V+ for the index are provided as well. As a first approximation, the expert chooses to define a simple triangular possibility distribution such that Core={Vi 0 } and Support=[V-, V+]. More sophisticated representation may also be used based on the definition of the less probable values V--/V++, but considering the structural and the non structural components of the current buildings in the context of Lourdes city, the expert has judged these values not reliable.

Model uncertainty representation

Definition

Model uncertainty is of epistemic nature (e.g. Der Kiureghian and Ditlevsen 2007) and arises from imperfect scientific and engineering modelling so that different models may be a priori adequate to describe the studied physical process and the selection among alternative models may not be straightforward. This uncertainty is encountered in the seismic risk model in the step of conversion between the ground motion parameter PGA and the macroseismic intensity I. For the scenario of Lourdes, two distinct models of conversion are selected as adequate by the expert, namely: model n°1 [START_REF] Atkinson | Empirical relationships between modified Mercalli intensity and response spectra[END_REF] and model n°2 [START_REF] Ambraseys | The correlation of intensity with ground motion[END_REF].

A classical approach would consist in calculating the pair of macroseismic intensity resulting from both models and then in aggregating the results by means of the MAX or of the MEAN operator. If the MEAN operator is chosen, the information on the upper and the lower bounds would be lost. If the MAX operator is chosen, the most risky value for the seismic hazard estimation is chosen, but the resulting value might be too conservative, leading to a possible over estimation of the final output of the damage. The possibility distribution provides a good compromise of both described alternatives, as the support interval represents the range of all possible values between the minimum and the maximum of the calculated macroseismic intensities, whereas the core represents the most likely intensity.

Dealing with sources of information in conflict

Besides, the possibility theory offers tools to aggregate (i.e. combine) sources of information, which might be in conflict (i.e. in disagreement). The notion of conflict between sources of information (represented by the possibility distribution  1 and  2 ) is illustrated on the Fig. 4 A). It appears when  1 and  2 do not share the same range of possible values i.e. the same support. The greater the intersection between sources, the smaller the value of the conflict, and conversely when the sources are completely disjoint, the conflict reaches a maximal value.

Let us define the consensus zone as the area under the function defined as the conjunction of  1 and  2 (corresponding to the light grey coloured area in Fig 4 A). We assign to this consensus zone an indicator h defined as the degree of possibility of the intersection point between  1 and  2 (Fig 4 A) and formally reads as h=sup s (min( 1 (s); 2 (s)). This indicator represents the degree of concordance (also named -consensus level‖) between the information sources so that the quantity 1-h represents the -degree of conflict‖. To deal with sources of information in conflict, we propose to use the adaptive combination rule developed by (Dubois and Prade 1992a), which reads as follows:
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The Fig 4B ) depicts the final possibility distribution resulting from the combination of the source of information in conflict  1 and  2 . The first term min(( 1 (s) ;  2 (s))/h in Eq. ( 8) represents the consensus zone between the information sources (normalized by the degree of concordance), hence corresponding to the -most likely‖ values for the imprecise parameter s. In Fig. 4 B), this zone is depicted by a light grey coloured area. The second term min(max( 1 (s) ;  2 (s));1-h) in Eq. ( 8) allows taking into account the possible values for s, which are not within the consensus zone.

The influence of both sources of information are restricted outside the consensus zone regarding the degree of conflict 1-h so that the degree of possibility of  is equally supported by both distributions  1 and  2 and cannot be greater than 1-h. In Fig. 4 B), the zone outside the consensus zone is depicted by a dark grey coloured area.

[Fig. 4 about here]

Qualitative information representation

This type of epistemic uncertainty results from the vagueness of the qualitative information. An approach based on the fuzzy logic methodology [START_REF] Zadeh | The Concept of a Linguistic Variable and Its Application to Approximate Reasoning[END_REF]Dubois and Prade 1992b) is presented in this section and illustrated with the inventory of the vulnerability classes in each city district.

Context

In a classical statistical approach, this inventory should be developed from a representative sample i.e. a random sampling of the considered building set. In such a context, the uncertainties would depend on the size of the sample. However, such approach faces in practice the following constraints, which prevents the building sample from being fully representative: a) financial/time constraint prevents the inspection of each building in detail since it is often carried out from the roadside; b) due to the spatial extension of the district, the expert is only able to inspect a few districts, where it is possible to do so; and c) the heterogeneity of the typologies within a given district affects the representative property of the sample as well. In such a context, the resulting sample cannot be a purely random sampling and the probabilistic approach shows limitations.

We propose to treat the uncertainty on the typology proportion p i using a triangular possibility distribution. The core of such a distribution is defined by the observed value and the support is defined by [p i -ε , p i + ε]. Nevertheless, quantifying the error ε is rarely an easy task and the available information is often vague and qualitative. For instance, the experts may only be able to state whether the imprecision is -low‖ or -medium‖ or -high‖. At this level, two sources of uncertainty should be dealt with: i) how to represent the vagueness linked with the qualified statement of imprecision and ii) how to decide which class of imprecision to choose (i.e. decision under vagueness).

Vagueness representation

Experts may feel more comfortable asserting a range of values from their specific or general knowledge about each qualified imprecision statement than a single crisp value. Thus, we propose to tackle the vagueness linked with each imprecision statement by means of fuzzy sets [START_REF] Zadeh | The Concept of a Linguistic Variable and Its Application to Approximate Reasoning[END_REF]. A fuzzy set F is identified with a membership function F  from a finite set S to the unit interval. The value

) ( s F 
is the membership grade of element s in the fuzzy set. A possibility distribution  is seen as the membership function F  of a normalized fuzzy set F.

The imprecision of the inventory (in percentage) is qualified using the following statements -low‖, -medium‖ and -high‖. To illustrate, the representation of the vagueness linked with the statement -low imprecision‖, a trapezoidal fuzzy set is constructed as follows. The imprecision is judged preferentially -low-for a percentage ranging from 0 to 1%, but the value 5% is judged -still relevant‖ to be taken into account. In case of Lourdes, we use two decision criteria namely the district density (in numbers of buildings per km²) and the heterogeneity of the typologies (in numbers of vulnerability classes) in order to assess the imprecision of the inventory (see hereafter section 2.3.3). Each decision criterion is also qualified using the following statement -low‖, -medium‖ and -high‖ and to each qualified statement, a fuzzy set is assigned (as described in section 2.3.2). The assumptions for the fuzzy set definition are given in Table 1.

[Table 1 about here]

Decision under vagueness

In case of Lourdes, logical rules (see Table 1) exist between two decision criteria, namely the district density, the heterogeneity of the typologies, and the resulting imprecision of the inventory.

We propose to tackle the arbitrary choice of the proper class of imprecision, by means of an approach adapted from fuzzy logic [START_REF] Zadeh | The Concept of a Linguistic Variable and Its Application to Approximate Reasoning[END_REF]Dubois and Prade 1992b).

[Table 2 about here]

This table should be read as follows: IF -Low density‖ AND -Low heterogeneity‖ THEN -Low imprecision‖. Such statements are named -Fuzzy rules‖.

[Fig. 5 about here] Fig. 5 illustrates the methodology, which is divided into three main steps.



Step A) -Characterization‖. a fuzzy set is assigned to each qualified decision criterion.

The membership values in each decision criterion class of the considered district are then estimated.



Step B) -Combination‖. A district may be a member of a fuzzy imprecision class -to some degree‖ depending on its density value and on its heterogeneity in terms of number of vulnerability classes. Given step A), the membership values µ of the corresponding district in each imprecision classes are determined from the min/max combination approach (e.g. [START_REF] Cox | The fuzzy systems handbook[END_REF]. The membership function associated with the uncertainty on the imprecision evaluation is then constructed based on the combination of the fuzzy sets associated with each qualified statement (-low imprecision‖, -medium imprecision‖ and -high imprecision‖) and weighed by the corresponding membership values µ.



Step C) -Defuzzyfication‖. The membership function associated with the uncertainty on the imprecision evaluation is then converted to a crisp value synthesizing the vagueness of the qualified imprecision. The chosen -defuzzyfication‖ method is the -centroid‖ method (e.g. [START_REF] Cox | The fuzzy systems handbook[END_REF]). Graphically, this method consists in calculating the centre of gravity of the area under the curve of the membership function (i.e. -centroid‖). The x-coordinate of this -centroidrepresents the -defuzzified‖ value, which provides an indicator for the vagueness of the qualified statement (of the imprecision inventory of the vulnerability classes in each city district. in this case).

To illustrate, the Lourdes district n°18 is characterized by two vulnerability classes and 2 542 buildings per km². The corresponding membership (following step A) values are: µ(low heterogeneity) = 0.5; µ(medium heterogeneity) = 0.5; µ(high heterogeneity) = 0; µ(low density) = 0; µ(medium density) =0.64 and µ(high density) = 0.36. The combination under the min/max approach (step B) gives the results in Table 3.

[Table 3 about here]

The resulting membership values in the imprecision classes are:

µ(low imprecision) = Max(0.5, 0, 0) = 0.5; µ(medium imprecision) = Max(0.36, .5, 0) = 0.5 and µ(high imprecision) = Max(0.36, 0, 0.36) = 0.36. For the Lourdes district n°18, the -defuzzyfication‖ process (step C) gives a value of 15.5%. This means that the imprecision of the proportion of each vulnerability classes is assessed in this district reaches 15.5 %. This value synthesizes the whole vagueness associated with each qualified statement (-low imprecision‖, -medium imprecision‖ and -high imprecision‖), each of them being weighed by the membership values estimated from the qualified statements for the district heterogeneity and density.

Propagation of epistemic uncertainties

This section describes the methodology used to propagate and to summarize the epistemic uncertainties within the scenario-based earthquake risk model.

Fuzzy interval analysis

As the uncertainty on each model parameters is represented in the possibility framework, the propagation approach is based on fuzzy interval analysis [START_REF] Dubois | Possibility theory, probability and fuzzy sets: Misunderstandings, bridges and gaps[END_REF]. This approach basically consists in an interval analysis for each -cut, with  ranging form 0 to 1. Fig. 6 illustrates the Fuzzy interval analysis for the addition of two imprecise parameters A and B.

[Fig. 6 about here]

Seismic hazard assessment

The described approach is carried out to calculate the possibility distribution of PGA in the studied zone from the definition of the scenario (i.e. the definition of the reference PGA on bedrock) and from the definition of the possibility distribution assigned to the amplification factor in each geotechnical zone using Eq. ( 5). The pair of possibility distributions assigned to the macroseismic intensity is then calculated for both conversion models (section 2.2) and a unique possibility distribution is derived using the methodology to combine several sources of information (Eq. ( 8) in section 2.2.2). For illustration of this procedure, see Fig. 4. 20

Vulnerability assessment

The vulnerability analysis results in a possibility distribution assigned to the vulnerability index in each city district. The latter is calculated based on the fuzzy interval analysis using Eq. ( 7) for the possibility distributions assigned to each vulnerability index and for the triangular possibility assigned to the typology proportion derived from the fuzzy logic approach described in section 2.3.

Damage assessment

The outputs of the hazard and the vulnerability assessment are used as inputs for the damage assessment using Eq. ( 4) to calculate the mean damage grade r D . The latter is used for the definition (Eq. ( 3)) of the probabilistic damage curve i.e. the decision curve.

In a seismic analysis with no uncertainty (i.e. a deterministic assessment), the result of the hazard and the vulnerability assessment are crisp values. In this case, the output is a unique decision curve. If the epistemic uncertainties on the model parameters were simply represented by intervals, the risk model output would be a set of damage curves, which would be determined by its pair of lower and upper curves.

The proposed methodology uses possibility distributions, which are seen as a set of intervals associated with a degree of possibility corresponding to the -cuts and formally, correspond to the confidence intervals 1- (as defined in the probability theory, see section 2.1). For each degree , a pair of damage lower and upper bounds can be constructed, thus defining a family of damage curves associated with each degree  (with  ranging from 0 to 1). Fig. 7 illustrates the methodology to be used for the construction of the family of probabilistic damage curves on the basis of the -cuts of the imprecise mean damage value r D depicted in Fig. 7 A)

[Fig. 7 about here]

Synthesis of uncertainty information

The output of the propagation procedure gives the decision maker all the possible alternatives for the probabilistic damage curves. This set of decision curves should be summarized for an efficient use in risk management. The objective is to provide a simple measure of the whole epistemic uncertainty. In this view, we use methodological tools [START_REF] Baudrit | Post-processing the hybrid method for addressing uncertainty in risk assessments[END_REF][START_REF] Baudrit | Practical representations of incomplete probabilistic knowledge[END_REF][START_REF] Baudrit | Joint Propagation of Probability and Possibility in Risk Analysis: toward a formal framework[END_REF]) about uncertainty processing in the framework of fuzzy random variables.

In the literature, fuzzy random variables can be interpreted in different ways depending on the context of the study (see [START_REF] Gil | Fuzzy random variables (special issue)[END_REF]) for an overview).

In this paper, a fuzzy random variable is interpreted as a possibility distribution over classical random variables (named the second order model, see [START_REF] Couso | Second order possibility measure induced by a fuzzy random variable[END_REF]Couso and Sanchez 2008). In the following, we briefly introduce the basic notion of fuzzy random variable inducing a second order possibility measure in order to have a better understanding of the fuzzy random variable post processing.

Let us consider the random variable T=f(X, Y) and T P its associated probability measure, where f: ²  is a known mapping, X a random variable and Y is another imprecisely known random P with a confidence level 1- such that: 
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Where -card‖ corresponds to the cardinality operator (i.e. size) of the considered set,  is the infinite bound and  is the null set.

In the continuous case, the same principle can be followed [START_REF] Smets | Belief function on real numbers[END_REF]. A second-order possibility distribution is then defined, over a set of probability measures by means of  -cuts

  T T P P   ,
. In this framework, the probability of a given event A is not precise meaning that it can not be represented by a crisp value, but rather by a range of possible values. The described formal concepts let us state for instance that -the probability that the true probability of the event A is 0.5 ranges between 0.4 and 0.7. [START_REF] Couso | Second order possibility measure induced by a fuzzy random variable[END_REF] showed that the interval defined by Eq. ( 12) provides the smallest envelope of the -true‖ probability of A given the available information.
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This means that the measure ) ( A P T (resp.

) ( A P T

) corresponds to the greatest lower bound (resp. smallest upper bound) that we give to the probability of A.

Use for an informed decision

In a classical probabilistic approach, uncertainty propagation within the earthquake risk model would have resulted in a single probability value for the damage level to exceed a given damage grade D k (k=0 to 5). Yet, the model is tainted with imprecision, vague qualified information and unambiguous choice of the appropriate model. Under such a situation of -partial ignorance‖, we can see  The probability of exceeding the grade of damage D 4 is between 1.7 % and 11 % in the district n°10. When considering the district n°81, the lower indicator is 2.63 % and the upper one is 13.5 %. The comparison is straightforward, as both indicators show that the probability of the event -dD4‖ is the higher in the district n°81.

 When considering the lower and upper indicators in the district n°40 of respectably 0.9 % and 18 %, no conclusion can be drawn from the comparison of the indicators for districts n°81 and n°10. In the district n°40, the epistemic uncertainties are very large (around 17.9 %), whereas it reaches around 10 % in the other districts. Such an analysis points out that additional investigations should be undertaken in the district n°40.

Conclusion and further works

A methodology is developed to represent and propagate the epistemic uncertainties in a scenariobased earthquake risk assessment procedure adapted by the BRGM (French geological survey) from the Risk-UE methodology. Tools are developed under the possibility framework [START_REF] Zadeh | Fuzzy Sets as a basis for a theory of possibility[END_REF][START_REF] Zimmermann | Fuzzy Sets and its Applications[END_REF][START_REF] Dubois | Possibility theory, probability and fuzzy sets: Misunderstandings, bridges and gaps[END_REF]. The earthquake scenario of the city of Lourdes (South France) is used for illustration. Three types of epistemic uncertainties are dealt with. (1) Instead of synthesizing the imprecision on the site effect and on the vulnerability measurement by a single weight (logic tree approach), we propose to construct a possibility distribution based on expert opinion. The latter is interpreted in terms of a set of confidence intervals. (2) The ambiguous choice of the correct conversion law from peak ground acceleration to macroseismic intensity (-model uncertainty‖) is assessed by using the combination rule of (Dubois and Prade 1992a). (3) An approximate reasoning approach [START_REF] Zadeh | The Concept of a Linguistic Variable and Its Application to Approximate Reasoning[END_REF]Dubois and Prade 1992b) is constructed to assess the vague information associated with the exposed building inventory.

The propagation of these epistemic uncertainties under the fuzzy -cut analysis results in a family of probabilistic risk curves. Instead of arbitrarily choosing a single decision curve, this rich information source is synthesized by using the framework of fuzzy random variables [START_REF] Baudrit | Post-processing the hybrid method for addressing uncertainty in risk assessments[END_REF][START_REF] Baudrit | Practical representations of incomplete probabilistic knowledge[END_REF][START_REF] Baudrit | Joint Propagation of Probability and Possibility in Risk Analysis: toward a formal framework[END_REF]. The output of the uncertainty propagation is a pair of indicators bracketing the probability to exceed a given grade of damage.

The gap between the two indicators reflects the imprecise character of uncertainty related to the earthquake scenario model, thus picturing the extent of what is ignored. This gap can be used for risk management as a guidance to outline the zones where further investigations should carried out.

Further studies should be carried out to refine the epistemic uncertainty representation. In particular, the uncertainties in ground-motion (the so-called -attenuation equations‖) models [START_REF] Cotton | Criteria for selecting and adjusting ground-motion models for specific target regions: Application to Central Europe and rock sites[END_REF]) should be further investigated, in particular the choice of an appropriate model [START_REF] Douglas | Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates[END_REF]. 

  3 A) depicts a trapezoidal possibility distribution associated with the core [c; d] and the support [a, b]. Possibility distribution encodes a probability family (De Cooman et al. 1999; Dubois and Prade, 1992c) limited by an upper probability bound called the possibility measure ) instance the upper cumulative probability bound on Fig. 3 B) and a lower probability bound called the necessity measure )a specific interval (E=]1.0, +) for instance).

  variable described by a fuzzy set Y ~associated with the possibility distribution Y  : [0, grade that Y coincide with y. Then, T ~=f(X, Y ~) is a fuzzy random variable defined by the extension principle: a Monte Carlo sampling combined with fuzzy interval analysis where f corresponds to the addition, X has a uniform probability distribution on [0, 1] while Y is represented by a triangular possibility distribution of core {3} and support [2, 4].[Fig.8about here]The fuzzy random variable T ~represents the imprecise information about T. Let us define the the sake of clarity, let us assume that X takes a finite number of different values
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