Atmospheric carbon depletion as a tracer of water oceans and biomass on temperate terrestrial exoplanets - Département de mécanique
Article Dans Une Revue Nature Astronomy Année : 2024

Atmospheric carbon depletion as a tracer of water oceans and biomass on temperate terrestrial exoplanets

Résumé

The conventional observables to identify a habitable or inhabited environment in exoplanets, such as an ocean glint or abundant atmospheric O2, will be challenging to detect with present or upcoming observatories. Here we suggest a new signature. A low carbon abundance in the atmosphere of a temperate rocky planet, relative to other planets of the same system, traces the presence of a substantial amount of liquid water, plate tectonics and/or biomass. Here we show that JWST can already perform such a search in some selected systems such as TRAPPIST-1 via the CO2 band at 4.3 μm, which falls in a spectral sweet spot where the overall noise budget and the effect of cloud and/or hazes are optimal. We propose a three-step strategy for transiting exoplanets: detection of an atmosphere around temperate terrestrial planets in about 10 transits for the most favourable systems; assessment of atmospheric carbon depletion in about 40 transits; and measurements of O3 abundance to disentangle between a water- versus biomass-supported carbon depletion in about 100 transits. The concept of carbon depletion as a signature for habitability is also applicable for next-generation direct-imaging telescopes
Fichier principal
Vignette du fichier
2310.14987v2.pdf (2.09 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04790253 , version 1 (19-11-2024)

Identifiants

Citer

Amaury Triaud, Julien de Wit, Frieder Klein, Benjamin Rackham, Martin Turbet, et al.. Atmospheric carbon depletion as a tracer of water oceans and biomass on temperate terrestrial exoplanets. Nature Astronomy, 2024, 8 (1), pp.17-29. ⟨10.1038/s41550-023-02157-9⟩. ⟨hal-04790253⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More