Standardized numerical simulations of cardiac electrical stimulation devices
Simulations numériques standardisées de dispositifs de stimulation électrique cardiaque
Résumé
Cardiovascular diseases are the world’s leading cause of death, responsible for around 32% of all deaths in 2019, according to the World Health Organization (WHO). Faced with these pathologies, medical research is making constant progress to develop ever more effective treatments and devices. Among these innovations, implantable pacemakers play a crucial role in the treatment of cardiac rhythm disorders, intervening directly on the heart in the event of malfunction. Despite, despite their importance, the development of these technologies remains slow and costly. It often takes almost a decade from early prototyping to market launch, delaying their impact on human lives. This thesis is part of the European collaborative project SimCardioTest (EU H2020), which aims to accelerate the adoption of numerical tools for the certification of drugs and medical devices, such as implantable pacemakers. One of the main goals of the project is to integrate numerical simulations in the form of in silico clinical trials on a standardized web plateform in oirder to speed up thecertification process. During of this thesis, several mathematical models were developed and analyzed, ranging from generic three-dimensional models to simplified models with no spatial dimension. All these models include a electrical circuit inspired by a commercial pacemaker, contact models representing the ionic layers on electrode surfaces as equivalent electrical circuits, and cardiac tissue models with or without spatial propagation of cardiac action potentials. The credibility of these models is assessed through comparisons with animal experiments conducted during the thesis, with the aim of demonstrating their ability to reproduce realistic cardiac stimulations. These comparisons are based mainly on the voltages measured by pacemakers and on the study of threshold curves, also known as Lapicque curves. These curves, widely used clinically to adjust pacemakers, establish the relationship between stimulation duration and amplitude required to induce an effective cardiac contraction. In particular, they enable pacemaker settings to be optimized through individual customization, thereby minimizing energy consumption, maximizing device life, and therefore improving patient’s life quality. The adoption of simplified dimensionless models is an valuable strategic step in this thesis. Unlike spatial models, which are very costly to solve numerically, these models are simpler to solve and have enabled several parametric studies to be carried out, in particular to perform calibration using experimental data. Additional sensitivity studies, both local and global, were also carried out to analyze the influence and relevance of the parameters in the developed models.
Les maladies cardiovasculaires représentent la principale cause de mortalité dans le monde, responsables d’environ 32% des décès en 2019 selon l’Organisation mondiale de la santé (OMS). Face à ces pathologies, la recherche médicale progresse continuellement pour développer des traitements et des dispositifs toujours plus performants. Parmi ces innovations, les stimulateurs cardiaques implantables jouent un rôle crucial dans le traitement des troubles du rythme cardiaque, en intervenant directement sur le cœur en cas de dysfonctionnement. Cependant, malgré leur importance, le développement de ces technologies reste lent et coûteux. Il faut souvent près d’une décennie entre la conception d’un prototype et sa mise sur le marché, ce qui retarde leur impact sur les vies humaines. Cette thèse s’inscrit dans le cadre du projet européen collaboratif SimCardioTest (EU H2020), dont l’objectif est d’accélérer l’adoption d’outils numériques pour la certification de médicaments et de dispositifs médicaux, tels que les stimulateurs cardiaques implantables. L’un des objectifs principaux du projet est d’intégrer les simulations numériques sous la forme d’essais cliniques in silico dans le processus de certification, afin de rendre ce dernier plus rapide à l’aide d’une plateforme web standardisée. Au cours de cette thèse, plusieurs modèles mathématiques ont été développés et analysés, allant de modèles génériques tridimensionnels à des modèles simplifiés sans dimension spatiale. Tous ces modèles comprennent un circuit électrique inspiré d’un stimulateur cardiaque commercial, des modèles de contacts reproduisant les couches ioniques à la surface des électrodes sous forme de circuits électriques équivalents, ainsi que des modèles de tissu cardiaque avec ou sans propagation spatiale de potentiels d’action cardiaque. La crédibilité de ces modèles est évaluée par des comparaisons avec des expérimentations animales menées durant la thèse, dans le but de démontrer leur capacité à reproduire des stimulations cardiaques réalistes. Ces comparaisons reposent principalement sur les tensions mesurées par les stimulateurs cardiaques et sur l’étude des courbes de seuil, aussi appelées courbes de Lapicque. Ces courbes, largement utilisées en clinique pour ajuster les stimulateurs, établissent la relation entre la durée et l’amplitude de la stimulation nécessaires pour provoquer une contraction cardiaque efficace. Elles permettent en particulier d’optimiser, en personnalisant individuellement, les réglages des stimulateurs, et ainsi de minimiser la consommation d’énergie, maximiser la durée de vie du dispositif, et ainsi améliorer le confort de vie des patients. L’adoption de modèles simplifiés sans dimension constitue une étape stratégique importante de cette thèse. Contrairement aux modèles spatiaux, très coûteux à résoudre numériquement, ces modèles sont plus simples à résoudre et ils ont permis de réaliser plusieurs études paramétriques, notamment pour effectuer une calibration à partir des données expérimentales. Des études supplémentaires de sensibilité, locales et globales, ont également été menées afin d’analyser l’influence et la pertinence des paramètres dans les modèles développés.
Origine | Version validée par le jury (STAR) |
---|