Communication Dans Un Congrès Année : 2024

Confidence Calibration of Classifiers with Many Classes

Faouzi Adjed

Résumé

For classification models based on neural networks, the maximum predicted class probability is often used as a confidence score. This score rarely predicts well the probability of making a correct prediction and requires a post-processing calibration step. However, many confidence calibration methods fail for problems with many classes. To address this issue, we transform the problem of calibrating a multiclass classifier into calibrating a single surrogate binary classifier. This approach allows for more efficient use of standard calibration methods. We evaluate our approach on numerous neural networks used for image or text classification and show that it significantly enhances existing calibration methods. Our code can be accessed at the following link: https://github.com/allglc/tva-calibration.
Fichier principal
Vignette du fichier
Confidence Calibration of Classifiers with Many Classes camera_ready.pdf (546.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04767144 , version 1 (05-11-2024)

Identifiants

  • HAL Id : hal-04767144 , version 1

Citer

Adrien Le Coz, Stéphane Herbin, Faouzi Adjed. Confidence Calibration of Classifiers with Many Classes. NeurIPS 2024, Dec 2024, Vancouver, Canada. ⟨hal-04767144⟩
87 Consultations
13 Téléchargements

Partager

More