Generative methods for sampling transition paths in molecular dynamics - Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique
Article Dans Une Revue ESAIM: Proceedings Année : 2023

Generative methods for sampling transition paths in molecular dynamics

Résumé

Molecular systems often remain trapped for long times around some local minimum of the potential energy function, before switching to another one -- a behavior known as metastability. Simulating transition paths linking one metastable state to another one is difficult by direct numerical methods. In view of the promises of machine learning techniques, we explore in this work two approaches to more efficiently generate transition paths: sampling methods based on generative models such as variational autoencoders, and importance sampling methods based on reinforcement learning.
Fichier principal
Vignette du fichier
proc2307312.pdf (2.04 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-03661671 , version 1 (13-09-2024)

Licence

Identifiants

Citer

Tony Lelièvre, Geneviève Robin, Inass Sekkat, Gabriel Stoltz, Gabriel Victorino Cardoso. Generative methods for sampling transition paths in molecular dynamics. ESAIM: Proceedings, 2023, 73, pp.238-256. ⟨10.1051/proc/202373238⟩. ⟨hal-03661671⟩
247 Consultations
34 Téléchargements

Altmetric

Partager

More